|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | template<typename DstXprType, typename SrcXprType> | 
|  | EIGEN_STRONG_INLINE | 
|  | DstXprType& copy_using_evaluator(const EigenBase<DstXprType> &dst, const SrcXprType &src) | 
|  | { | 
|  | call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar>()); | 
|  | return dst.const_cast_derived(); | 
|  | } | 
|  |  | 
|  | template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType> | 
|  | EIGEN_STRONG_INLINE | 
|  | const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst, const SrcXprType &src) | 
|  | { | 
|  | call_assignment(dst, src.derived(), internal::assign_op<typename DstXprType::Scalar>()); | 
|  | return dst.expression(); | 
|  | } | 
|  |  | 
|  | template<typename DstXprType, typename SrcXprType> | 
|  | EIGEN_STRONG_INLINE | 
|  | DstXprType& copy_using_evaluator(const PlainObjectBase<DstXprType> &dst, const SrcXprType &src) | 
|  | { | 
|  | #ifdef EIGEN_NO_AUTOMATIC_RESIZING | 
|  | eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size()) | 
|  | : (dst.rows() == src.rows() && dst.cols() == src.cols()))) | 
|  | && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); | 
|  | #else | 
|  | dst.const_cast_derived().resizeLike(src.derived()); | 
|  | #endif | 
|  |  | 
|  | call_assignment(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar>()); | 
|  | return dst.const_cast_derived(); | 
|  | } | 
|  |  | 
|  | template<typename DstXprType, typename SrcXprType> | 
|  | void add_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) | 
|  | { | 
|  | typedef typename DstXprType::Scalar Scalar; | 
|  | call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::add_assign_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | template<typename DstXprType, typename SrcXprType> | 
|  | void subtract_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) | 
|  | { | 
|  | typedef typename DstXprType::Scalar Scalar; | 
|  | call_assignment(const_cast<DstXprType&>(dst), src.derived(), internal::sub_assign_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | template<typename DstXprType, typename SrcXprType> | 
|  | void multiply_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) | 
|  | { | 
|  | typedef typename DstXprType::Scalar Scalar; | 
|  | call_assignment(dst.const_cast_derived(), src.derived(), internal::mul_assign_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | template<typename DstXprType, typename SrcXprType> | 
|  | void divide_assign_using_evaluator(const DstXprType& dst, const SrcXprType& src) | 
|  | { | 
|  | typedef typename DstXprType::Scalar Scalar; | 
|  | call_assignment(dst.const_cast_derived(), src.derived(), internal::div_assign_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | template<typename DstXprType, typename SrcXprType> | 
|  | void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src) | 
|  | { | 
|  | typedef typename DstXprType::Scalar Scalar; | 
|  | call_assignment(dst.const_cast_derived(), src.const_cast_derived(), internal::swap_assign_op<Scalar>()); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | using namespace std; | 
|  |  | 
|  | #define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval()); | 
|  | #define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval()); | 
|  |  | 
|  | void test_evaluators() | 
|  | { | 
|  | // Testing Matrix evaluator and Transpose | 
|  | Vector2d v = Vector2d::Random(); | 
|  | const Vector2d v_const(v); | 
|  | Vector2d v2; | 
|  | RowVector2d w; | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR(v2, v); | 
|  | VERIFY_IS_APPROX_EVALUATOR(v2, v_const); | 
|  |  | 
|  | // Testing Transpose | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose()); | 
|  |  | 
|  | copy_using_evaluator(w.transpose(), v); // Transpose as lvalue | 
|  | VERIFY_IS_APPROX(w,v.transpose().eval()); | 
|  |  | 
|  | copy_using_evaluator(w.transpose(), v_const); | 
|  | VERIFY_IS_APPROX(w,v_const.transpose().eval()); | 
|  |  | 
|  | // Testing Array evaluator | 
|  | { | 
|  | ArrayXXf a(2,3); | 
|  | ArrayXXf b(3,2); | 
|  | a << 1,2,3, 4,5,6; | 
|  | const ArrayXXf a_const(a); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR(b, a.transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose()); | 
|  |  | 
|  | // Testing CwiseNullaryOp evaluator | 
|  | copy_using_evaluator(w, RowVector2d::Random()); | 
|  | VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ... | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero()); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3)); | 
|  |  | 
|  | // mix CwiseNullaryOp and transpose | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose()); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test product expressions | 
|  | int s = internal::random<int>(1,100); | 
|  | MatrixXf a(s,s), b(s,s), c(s,s), d(s,s); | 
|  | a.setRandom(); | 
|  | b.setRandom(); | 
|  | c.setRandom(); | 
|  | d.setRandom(); | 
|  | VERIFY_IS_APPROX_EVALUATOR(d, (a + b)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose()); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose()); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c); | 
|  |  | 
|  | // check that prod works even with aliasing present | 
|  | c = a*a; | 
|  | copy_using_evaluator(a, prod(a,a)); | 
|  | VERIFY_IS_APPROX(a,c); | 
|  |  | 
|  | // check compound assignment of products | 
|  | d = c; | 
|  | add_assign_using_evaluator(c.noalias(), prod(a,b)); | 
|  | d.noalias() += a*b; | 
|  | VERIFY_IS_APPROX(c, d); | 
|  |  | 
|  | d = c; | 
|  | subtract_assign_using_evaluator(c.noalias(), prod(a,b)); | 
|  | d.noalias() -= a*b; | 
|  | VERIFY_IS_APPROX(c, d); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test product with all possible sizes | 
|  | int s = internal::random<int>(1,100); | 
|  | Matrix<float,      1,      1> m11, res11;  m11.setRandom(1,1); | 
|  | Matrix<float,      1,      4> m14, res14;  m14.setRandom(1,4); | 
|  | Matrix<float,      1,Dynamic> m1X, res1X;  m1X.setRandom(1,s); | 
|  | Matrix<float,      4,      1> m41, res41;  m41.setRandom(4,1); | 
|  | Matrix<float,      4,      4> m44, res44;  m44.setRandom(4,4); | 
|  | Matrix<float,      4,Dynamic> m4X, res4X;  m4X.setRandom(4,s); | 
|  | Matrix<float,Dynamic,      1> mX1, resX1;  mX1.setRandom(s,1); | 
|  | Matrix<float,Dynamic,      4> mX4, resX4;  mX4.setRandom(s,4); | 
|  | Matrix<float,Dynamic,Dynamic> mXX, resXX;  mXX.setRandom(s,s); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX); | 
|  | } | 
|  |  | 
|  | { | 
|  | ArrayXXf a(2,3); | 
|  | ArrayXXf b(3,2); | 
|  | a << 1,2,3, 4,5,6; | 
|  | const ArrayXXf a_const(a); | 
|  |  | 
|  | // this does not work because Random is eval-before-nested: | 
|  | // copy_using_evaluator(w, Vector2d::Random().transpose()); | 
|  |  | 
|  | // test CwiseUnaryOp | 
|  | VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v); | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose()); | 
|  |  | 
|  | // test CwiseBinaryOp | 
|  | VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3))); | 
|  |  | 
|  | // dynamic matrices and arrays | 
|  | MatrixXd mat1(6,6), mat2(6,6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); | 
|  | copy_using_evaluator(mat2.transpose(), mat1); | 
|  | VERIFY_IS_APPROX(mat2.transpose(), mat1); | 
|  |  | 
|  | ArrayXXd arr1(6,6), arr2(6,6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); | 
|  |  | 
|  | // test automatic resizing | 
|  | mat2.resize(3,3); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); | 
|  | arr2.resize(9,9); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1); | 
|  |  | 
|  | // test direct traversal | 
|  | Matrix3f m3; | 
|  | Array33f a3; | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity());  // matrix, nullary | 
|  | // TODO: find a way to test direct traversal with array | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose());  // transpose | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity());  // unary | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero());  // binary | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2));  // block | 
|  |  | 
|  | // test linear traversal | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero());  // matrix, nullary | 
|  | VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero());  // array | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose());  // transpose | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero());  // unary | 
|  | VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3);  // binary | 
|  |  | 
|  | // test inner vectorization | 
|  | Matrix4f m4, m4src = Matrix4f::Random(); | 
|  | Array44f a4, a4src = Matrix4f::Random(); | 
|  | VERIFY_IS_APPROX_EVALUATOR(m4, m4src);  // matrix | 
|  | VERIFY_IS_APPROX_EVALUATOR(a4, a4src);  // array | 
|  | VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose());  // transpose | 
|  | // TODO: find out why Matrix4f::Zero() does not allow inner vectorization | 
|  | VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src);  // unary | 
|  | VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src);  // binary | 
|  |  | 
|  | // test linear vectorization | 
|  | MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6); | 
|  | ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc);  // matrix | 
|  | VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc);  // array | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose());  // transpose | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6));  // nullary | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc);  // unary | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc);  // binary | 
|  |  | 
|  | // test blocks and slice vectorization | 
|  | VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0))); | 
|  | VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6)); | 
|  |  | 
|  | Matrix4f m4ref = m4; | 
|  | copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2)); | 
|  | m4ref.block(1, 1, 2, 3) = m3.bottomRows(2); | 
|  | VERIFY_IS_APPROX(m4, m4ref); | 
|  |  | 
|  | mX.setIdentity(20,20); | 
|  | MatrixXf mXref = MatrixXf::Identity(20,20); | 
|  | mXsrc = MatrixXf::Random(9,12); | 
|  | copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc); | 
|  | mXref.block(4, 4, 9, 12) = mXsrc; | 
|  | VERIFY_IS_APPROX(mX, mXref); | 
|  |  | 
|  | // test Map | 
|  | const float raw[3] = {1,2,3}; | 
|  | float buffer[3] = {0,0,0}; | 
|  | Vector3f v3; | 
|  | Array3f a3f; | 
|  | VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw)); | 
|  | Vector3f::Map(buffer) = 2*v3; | 
|  | VERIFY(buffer[0] == 2); | 
|  | VERIFY(buffer[1] == 4); | 
|  | VERIFY(buffer[2] == 6); | 
|  |  | 
|  | // test CwiseUnaryView | 
|  | mat1.setRandom(); | 
|  | mat2.setIdentity(); | 
|  | MatrixXcd matXcd(6,6), matXcd_ref(6,6); | 
|  | copy_using_evaluator(matXcd.real(), mat1); | 
|  | copy_using_evaluator(matXcd.imag(), mat2); | 
|  | matXcd_ref.real() = mat1; | 
|  | matXcd_ref.imag() = mat2; | 
|  | VERIFY_IS_APPROX(matXcd, matXcd_ref); | 
|  |  | 
|  | // test Select | 
|  | VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc)); | 
|  |  | 
|  | // test Replicate | 
|  | mXsrc = MatrixXf::Random(6, 6); | 
|  | VectorXf vX = VectorXf::Random(6); | 
|  | mX.resize(6, 6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX); | 
|  | matXcd.resize(12, 12); | 
|  | VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>())); | 
|  |  | 
|  | // test partial reductions | 
|  | VectorXd vec1(6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose()); | 
|  |  | 
|  | // test MatrixWrapper and ArrayWrapper | 
|  | mat1.setRandom(6,6); | 
|  | arr1.setRandom(6,6); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2); | 
|  | mat2.array() = arr1 * arr1; | 
|  | VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix()); | 
|  | arr2.matrix() = MatrixXd::Identity(6,6); | 
|  | VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array()); | 
|  |  | 
|  | // test Reverse | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse()); | 
|  | VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse()); | 
|  | arr2.reverse() = arr1; | 
|  | VERIFY_IS_APPROX(arr2, arr1.reverse()); | 
|  | mat2.array() = mat1.array().reverse(); | 
|  | VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse()); | 
|  |  | 
|  | // test Diagonal | 
|  | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal()); | 
|  | vec1.resize(5); | 
|  | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1)); | 
|  | VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>()); | 
|  | vec1.setRandom(); | 
|  |  | 
|  | mat2 = mat1; | 
|  | copy_using_evaluator(mat1.diagonal(1), vec1); | 
|  | mat2.diagonal(1) = vec1; | 
|  | VERIFY_IS_APPROX(mat1, mat2); | 
|  |  | 
|  | copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1)); | 
|  | mat2.diagonal<-1>() = mat2.diagonal(1); | 
|  | VERIFY_IS_APPROX(mat1, mat2); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test swapping | 
|  | MatrixXd mat1, mat2, mat1ref, mat2ref; | 
|  | mat1ref = mat1 = MatrixXd::Random(6, 6); | 
|  | mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6); | 
|  | swap_using_evaluator(mat1, mat2); | 
|  | mat1ref.swap(mat2ref); | 
|  | VERIFY_IS_APPROX(mat1, mat1ref); | 
|  | VERIFY_IS_APPROX(mat2, mat2ref); | 
|  |  | 
|  | swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3)); | 
|  | mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3)); | 
|  | VERIFY_IS_APPROX(mat1, mat1ref); | 
|  | VERIFY_IS_APPROX(mat2, mat2ref); | 
|  |  | 
|  | swap_using_evaluator(mat1.row(2), mat2.col(3).transpose()); | 
|  | mat1.row(2).swap(mat2.col(3).transpose()); | 
|  | VERIFY_IS_APPROX(mat1, mat1ref); | 
|  | VERIFY_IS_APPROX(mat2, mat2ref); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test compound assignment | 
|  | const Matrix4d mat_const = Matrix4d::Random(); | 
|  | Matrix4d mat, mat_ref; | 
|  | mat = mat_ref = Matrix4d::Identity(); | 
|  | add_assign_using_evaluator(mat, mat_const); | 
|  | mat_ref += mat_const; | 
|  | VERIFY_IS_APPROX(mat, mat_ref); | 
|  |  | 
|  | subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2)); | 
|  | mat_ref.row(1) -= 2*mat_ref.row(2); | 
|  | VERIFY_IS_APPROX(mat, mat_ref); | 
|  |  | 
|  | const ArrayXXf arr_const = ArrayXXf::Random(5,3); | 
|  | ArrayXXf arr, arr_ref; | 
|  | arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5); | 
|  | multiply_assign_using_evaluator(arr, arr_const); | 
|  | arr_ref *= arr_const; | 
|  | VERIFY_IS_APPROX(arr, arr_ref); | 
|  |  | 
|  | divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1); | 
|  | arr_ref.row(1) /= (arr_ref.row(2) + 1); | 
|  | VERIFY_IS_APPROX(arr, arr_ref); | 
|  | } | 
|  |  | 
|  | { | 
|  | // test triangular shapes | 
|  | MatrixXd A = MatrixXd::Random(6,6), B(6,6), C(6,6), D(6,6); | 
|  | A.setRandom();B.setRandom(); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<Upper>(), MatrixXd(A.triangularView<Upper>())); | 
|  |  | 
|  | A.setRandom();B.setRandom(); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitLower>(), MatrixXd(A.triangularView<UnitLower>())); | 
|  |  | 
|  | A.setRandom();B.setRandom(); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, A.triangularView<UnitUpper>(), MatrixXd(A.triangularView<UnitUpper>())); | 
|  |  | 
|  | A.setRandom();B.setRandom(); | 
|  | C = B; C.triangularView<Upper>() = A; | 
|  | copy_using_evaluator(B.triangularView<Upper>(), A); | 
|  | VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Upper>(), A)"); | 
|  |  | 
|  | A.setRandom();B.setRandom(); | 
|  | C = B; C.triangularView<Lower>() = A.triangularView<Lower>(); | 
|  | copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>()); | 
|  | VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>())"); | 
|  |  | 
|  |  | 
|  | A.setRandom();B.setRandom(); | 
|  | C = B; C.triangularView<Lower>() = A.triangularView<Upper>().transpose(); | 
|  | copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Upper>().transpose()); | 
|  | VERIFY(B.isApprox(C) && "copy_using_evaluator(B.triangularView<Lower>(), A.triangularView<Lower>().transpose())"); | 
|  |  | 
|  |  | 
|  | A.setRandom();B.setRandom(); C = B; D = A; | 
|  | C.triangularView<Upper>().swap(D.triangularView<Upper>()); | 
|  | swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>()); | 
|  | VERIFY(B.isApprox(C) && "swap_using_evaluator(B.triangularView<Upper>(), A.triangularView<Upper>())"); | 
|  |  | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.triangularView<Upper>(),A), MatrixXd(A.triangularView<Upper>()*A)); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, prod(A.selfadjointView<Upper>(),A), MatrixXd(A.selfadjointView<Upper>()*A)); | 
|  |  | 
|  | } | 
|  |  | 
|  | { | 
|  | // test diagonal shapes | 
|  | VectorXd d = VectorXd::Random(6); | 
|  | MatrixXd A = MatrixXd::Random(6,6), B(6,6); | 
|  | A.setRandom();B.setRandom(); | 
|  |  | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(d.asDiagonal(),A), MatrixXd(d.asDiagonal()*A)); | 
|  | VERIFY_IS_APPROX_EVALUATOR2(B, lazyprod(A,d.asDiagonal()), MatrixXd(A*d.asDiagonal())); | 
|  |  | 
|  | } | 
|  | } |