|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void product_extra(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, 1, Dynamic> RowVectorType; | 
|  | typedef Matrix<Scalar, Dynamic, 1> ColVectorType; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic, | 
|  | MatrixType::Flags&RowMajorBit> OtherMajorMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), | 
|  | identity = MatrixType::Identity(rows, rows), | 
|  | square = MatrixType::Random(rows, rows), | 
|  | res = MatrixType::Random(rows, rows), | 
|  | square2 = MatrixType::Random(cols, cols), | 
|  | res2 = MatrixType::Random(cols, cols); | 
|  | RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); | 
|  | ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); | 
|  | OtherMajorMatrixType tm1 = m1; | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(), | 
|  | s2 = internal::random<Scalar>(), | 
|  | s3 = internal::random<Scalar>(); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(),                 m1 * m2.adjoint().eval()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(),   m1.adjoint().eval() * square.adjoint().eval()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2,                 m1.adjoint().eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2,          (s1 * m1.adjoint()).eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2,        (numext::conj(s1) * m1.adjoint()).eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint()  * s1).eval() * (s3 * m2).eval()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2,     (s2 * m1.adjoint()  * s1).eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (-m1*s2) * s1*m2.adjoint(),        (-m1*s2).eval() * (s1*m2.adjoint()).eval()); | 
|  |  | 
|  | // a very tricky case where a scale factor has to be automatically conjugated: | 
|  | VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval()); | 
|  |  | 
|  |  | 
|  | // test all possible conjugate combinations for the four matrix-vector product cases: | 
|  |  | 
|  | VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), | 
|  | (-m1.conjugate()*s2).eval() * (s1 * vc2).eval()); | 
|  | VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), | 
|  | (-m1*s2).eval() * (s1 * vc2.conjugate()).eval()); | 
|  | VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), | 
|  | (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), | 
|  | (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), | 
|  | (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), | 
|  | (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), | 
|  | (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval()); | 
|  | VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), | 
|  | (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval()); | 
|  | VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), | 
|  | (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), | 
|  | (s1 * v1).eval() * (-m1.conjugate()*s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), | 
|  | (s1 * v1.conjugate()).eval() * (-m1*s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), | 
|  | (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), | 
|  | (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval()); | 
|  |  | 
|  | // test the vector-matrix product with non aligned starts | 
|  | Index i = internal::random<Index>(0,m1.rows()-2); | 
|  | Index j = internal::random<Index>(0,m1.cols()-2); | 
|  | Index r = internal::random<Index>(1,m1.rows()-i); | 
|  | Index c = internal::random<Index>(1,m1.cols()-j); | 
|  | Index i2 = internal::random<Index>(0,m1.rows()-1); | 
|  | Index j2 = internal::random<Index>(0,m1.cols()-1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0,j,m1.rows(),c), m1.col(j2).adjoint().eval() * m1.block(0,j,m1.rows(),c).eval()); | 
|  | VERIFY_IS_APPROX(m1.block(i,0,r,m1.cols()) * m1.row(i2).adjoint(), m1.block(i,0,r,m1.cols()).eval() * m1.row(i2).adjoint().eval()); | 
|  |  | 
|  | // regression test | 
|  | MatrixType tmp = m1 * m1.adjoint() * s1; | 
|  | VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1); | 
|  | } | 
|  |  | 
|  | // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947 | 
|  | void mat_mat_scalar_scalar_product() | 
|  | { | 
|  | Eigen::Matrix2Xd dNdxy(2, 3); | 
|  | dNdxy << -0.5, 0.5, 0, | 
|  | -0.3, 0, 0.3; | 
|  | double det = 6.0, wt = 0.5; | 
|  | VERIFY_IS_APPROX(dNdxy.transpose()*dNdxy*det*wt, det*wt*dNdxy.transpose()*dNdxy); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void zero_sized_objects(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | const int PacketSize  = internal::packet_traits<Scalar>::size; | 
|  | const int PacketSize1 = PacketSize>1 ?  PacketSize-1 : 1; | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | { | 
|  | MatrixType res, a(rows,0), b(0,cols); | 
|  | VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(rows,cols) ); | 
|  | VERIFY_IS_APPROX( (res=a*a.transpose()), MatrixType::Zero(rows,rows) ); | 
|  | VERIFY_IS_APPROX( (res=b.transpose()*b), MatrixType::Zero(cols,cols) ); | 
|  | VERIFY_IS_APPROX( (res=b.transpose()*a.transpose()), MatrixType::Zero(cols,rows) ); | 
|  | } | 
|  |  | 
|  | { | 
|  | MatrixType res, a(rows,cols), b(cols,0); | 
|  | res = a*b; | 
|  | VERIFY(res.rows()==rows && res.cols()==0); | 
|  | b.resize(0,rows); | 
|  | res = b*a; | 
|  | VERIFY(res.rows()==0 && res.cols()==cols); | 
|  | } | 
|  |  | 
|  | { | 
|  | Matrix<Scalar,PacketSize,0> a; | 
|  | Matrix<Scalar,0,1> b; | 
|  | Matrix<Scalar,PacketSize,1> res; | 
|  | VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) ); | 
|  | VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) ); | 
|  | } | 
|  |  | 
|  | { | 
|  | Matrix<Scalar,PacketSize1,0> a; | 
|  | Matrix<Scalar,0,1> b; | 
|  | Matrix<Scalar,PacketSize1,1> res; | 
|  | VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) ); | 
|  | VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) ); | 
|  | } | 
|  |  | 
|  | { | 
|  | Matrix<Scalar,PacketSize,Dynamic> a(PacketSize,0); | 
|  | Matrix<Scalar,Dynamic,1> b(0,1); | 
|  | Matrix<Scalar,PacketSize,1> res; | 
|  | VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize,1) ); | 
|  | VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize,1) ); | 
|  | } | 
|  |  | 
|  | { | 
|  | Matrix<Scalar,PacketSize1,Dynamic> a(PacketSize1,0); | 
|  | Matrix<Scalar,Dynamic,1> b(0,1); | 
|  | Matrix<Scalar,PacketSize1,1> res; | 
|  | VERIFY_IS_APPROX( (res=a*b), MatrixType::Zero(PacketSize1,1) ); | 
|  | VERIFY_IS_APPROX( (res=a.lazyProduct(b)), MatrixType::Zero(PacketSize1,1) ); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void bug_127() | 
|  | { | 
|  | // Bug 127 | 
|  | // | 
|  | // a product of the form lhs*rhs with | 
|  | // | 
|  | // lhs: | 
|  | // rows = 1, cols = 4 | 
|  | // RowsAtCompileTime = 1, ColsAtCompileTime = -1 | 
|  | // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5 | 
|  | // | 
|  | // rhs: | 
|  | // rows = 4, cols = 0 | 
|  | // RowsAtCompileTime = -1, ColsAtCompileTime = -1 | 
|  | // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1 | 
|  | // | 
|  | // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using the | 
|  | // max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1. | 
|  |  | 
|  | Matrix<float,1,Dynamic,RowMajor,1,5> a(1,4); | 
|  | Matrix<float,Dynamic,Dynamic,ColMajor,5,1> b(4,0); | 
|  | a*b; | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void unaligned_objects() | 
|  | { | 
|  | // Regression test for the bug reported here: | 
|  | // http://forum.kde.org/viewtopic.php?f=74&t=107541 | 
|  | // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then. | 
|  | // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases, | 
|  | // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault. | 
|  | for(int m=450;m<460;++m) | 
|  | { | 
|  | for(int n=8;n<12;++n) | 
|  | { | 
|  | MatrixXf M(m, n); | 
|  | VectorXf v1(n), r1(500); | 
|  | RowVectorXf v2(m), r2(16); | 
|  |  | 
|  | M.setRandom(); | 
|  | v1.setRandom(); | 
|  | v2.setRandom(); | 
|  | for(int o=0; o<4; ++o) | 
|  | { | 
|  | r1.segment(o,m).noalias() = M * v1; | 
|  | VERIFY_IS_APPROX(r1.segment(o,m), M * MatrixXf(v1)); | 
|  | r2.segment(o,n).noalias() = v2 * M; | 
|  | VERIFY_IS_APPROX(r2.segment(o,n), MatrixXf(v2) * M); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DONT_INLINE | 
|  | Index test_compute_block_size(Index m, Index n, Index k) | 
|  | { | 
|  | Index mc(m), nc(n), kc(k); | 
|  | internal::computeProductBlockingSizes<T,T>(kc, mc, nc); | 
|  | return kc+mc+nc; | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | Index compute_block_size() | 
|  | { | 
|  | Index ret = 0; | 
|  | ret += test_compute_block_size<T>(0,1,1); | 
|  | ret += test_compute_block_size<T>(1,0,1); | 
|  | ret += test_compute_block_size<T>(1,1,0); | 
|  | ret += test_compute_block_size<T>(0,0,1); | 
|  | ret += test_compute_block_size<T>(0,1,0); | 
|  | ret += test_compute_block_size<T>(1,0,0); | 
|  | ret += test_compute_block_size<T>(0,0,0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void test_product_extra() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( product_extra(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_2( product_extra(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_2( mat_mat_scalar_scalar_product() ); | 
|  | CALL_SUBTEST_3( product_extra(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | 
|  | CALL_SUBTEST_4( product_extra(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | 
|  | CALL_SUBTEST_1( zero_sized_objects(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | } | 
|  | CALL_SUBTEST_5( bug_127<0>() ); | 
|  | CALL_SUBTEST_6( unaligned_objects<0>() ); | 
|  | CALL_SUBTEST_7( compute_block_size<float>() ); | 
|  | CALL_SUBTEST_7( compute_block_size<double>() ); | 
|  | CALL_SUBTEST_7( compute_block_size<std::complex<double> >() ); | 
|  | } |