|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> void product_selfadjoint(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType; | 
|  |  | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, RowMajor> RhsMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3; | 
|  | VectorType v1 = VectorType::Random(rows), | 
|  | v2 = VectorType::Random(rows), | 
|  | v3(rows); | 
|  | RowVectorType r1 = RowVectorType::Random(rows), | 
|  | r2 = RowVectorType::Random(rows); | 
|  | RhsMatrixType m4 = RhsMatrixType::Random(rows,10); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(), | 
|  | s2 = internal::random<Scalar>(), | 
|  | s3 = internal::random<Scalar>(); | 
|  |  | 
|  | m1 = (m1.adjoint() + m1).eval(); | 
|  |  | 
|  | // rank2 update | 
|  | m2 = m1.template triangularView<Lower>(); | 
|  | m2.template selfadjointView<Lower>().rankUpdate(v1,v2); | 
|  | VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix()); | 
|  |  | 
|  | m2 = m1.template triangularView<Upper>(); | 
|  | m2.template selfadjointView<Upper>().rankUpdate(-v1,s2*v2,s3); | 
|  | VERIFY_IS_APPROX(m2, (m1 + (s3*(-v1)*(s2*v2).adjoint()+numext::conj(s3)*(s2*v2)*(-v1).adjoint())).template triangularView<Upper>().toDenseMatrix()); | 
|  |  | 
|  | m2 = m1.template triangularView<Upper>(); | 
|  | m2.template selfadjointView<Upper>().rankUpdate(-s2*r1.adjoint(),r2.adjoint()*s3,s1); | 
|  | VERIFY_IS_APPROX(m2, (m1 + s1*(-s2*r1.adjoint())*(r2.adjoint()*s3).adjoint() + numext::conj(s1)*(r2.adjoint()*s3) * (-s2*r1.adjoint()).adjoint()).template triangularView<Upper>().toDenseMatrix()); | 
|  |  | 
|  | if (rows>1) | 
|  | { | 
|  | m2 = m1.template triangularView<Lower>(); | 
|  | m2.block(1,1,rows-1,cols-1).template selfadjointView<Lower>().rankUpdate(v1.tail(rows-1),v2.head(cols-1)); | 
|  | m3 = m1; | 
|  | m3.block(1,1,rows-1,cols-1) += v1.tail(rows-1) * v2.head(cols-1).adjoint()+ v2.head(cols-1) * v1.tail(rows-1).adjoint(); | 
|  | VERIFY_IS_APPROX(m2, m3.template triangularView<Lower>().toDenseMatrix()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_product_selfadjoint() | 
|  | { | 
|  | int s = 0; | 
|  | for(int i = 0; i < g_repeat ; i++) { | 
|  | CALL_SUBTEST_1( product_selfadjoint(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( product_selfadjoint(Matrix<float, 2, 2>()) ); | 
|  | CALL_SUBTEST_3( product_selfadjoint(Matrix3d()) ); | 
|  |  | 
|  | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); | 
|  | CALL_SUBTEST_4( product_selfadjoint(MatrixXcf(s, s)) ); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); | 
|  | CALL_SUBTEST_5( product_selfadjoint(MatrixXcd(s,s)) ); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); | 
|  | CALL_SUBTEST_6( product_selfadjoint(MatrixXd(s,s)) ); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); | 
|  | CALL_SUBTEST_7( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s,s)) ); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } | 
|  | } |