|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/QR> | 
|  |  | 
|  | template<typename MatrixType> void qr(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType; | 
|  |  | 
|  | MatrixType a = MatrixType::Random(rows,cols); | 
|  | HouseholderQR<MatrixType> qrOfA(a); | 
|  |  | 
|  | MatrixQType q = qrOfA.householderQ(); | 
|  | VERIFY_IS_UNITARY(q); | 
|  |  | 
|  | MatrixType r = qrOfA.matrixQR().template triangularView<Upper>(); | 
|  | VERIFY_IS_APPROX(a, qrOfA.householderQ() * r); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType, int Cols2> void qr_fixedsize() | 
|  | { | 
|  | enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | Matrix<Scalar,Rows,Cols> m1 = Matrix<Scalar,Rows,Cols>::Random(); | 
|  | HouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1); | 
|  |  | 
|  | Matrix<Scalar,Rows,Cols> r = qr.matrixQR(); | 
|  | // FIXME need better way to construct trapezoid | 
|  | for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1, qr.householderQ() * r); | 
|  |  | 
|  | Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2); | 
|  | Matrix<Scalar,Rows,Cols2> m3 = m1*m2; | 
|  | m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2); | 
|  | m2 = qr.solve(m3); | 
|  | VERIFY_IS_APPROX(m3, m1*m2); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void qr_invertible() | 
|  | { | 
|  | using std::log; | 
|  | using std::abs; | 
|  | using std::pow; | 
|  | using std::max; | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | int size = internal::random<int>(10,50); | 
|  |  | 
|  | MatrixType m1(size, size), m2(size, size), m3(size, size); | 
|  | m1 = MatrixType::Random(size,size); | 
|  |  | 
|  | if (internal::is_same<RealScalar,float>::value) | 
|  | { | 
|  | // let's build a matrix more stable to inverse | 
|  | MatrixType a = MatrixType::Random(size,size*4); | 
|  | m1 += a * a.adjoint(); | 
|  | } | 
|  |  | 
|  | HouseholderQR<MatrixType> qr(m1); | 
|  | m3 = MatrixType::Random(size,size); | 
|  | m2 = qr.solve(m3); | 
|  | VERIFY_IS_APPROX(m3, m1*m2); | 
|  |  | 
|  | // now construct a matrix with prescribed determinant | 
|  | m1.setZero(); | 
|  | for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>(); | 
|  | RealScalar absdet = abs(m1.diagonal().prod()); | 
|  | m3 = qr.householderQ(); // get a unitary | 
|  | m1 = m3 * m1 * m3; | 
|  | qr.compute(m1); | 
|  | VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant()); | 
|  | // This test is tricky if the determinant becomes too small. | 
|  | // Since we generate random numbers with magnitude rrange [0,1], the average determinant is 0.5^size | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( abs(absdet-qr.absDeterminant()), (max)(RealScalar(pow(0.5,size)),(max)(abs(absdet),abs(qr.absDeterminant()))) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void qr_verify_assert() | 
|  | { | 
|  | MatrixType tmp; | 
|  |  | 
|  | HouseholderQR<MatrixType> qr; | 
|  | VERIFY_RAISES_ASSERT(qr.matrixQR()) | 
|  | VERIFY_RAISES_ASSERT(qr.solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(qr.householderQ()) | 
|  | VERIFY_RAISES_ASSERT(qr.absDeterminant()) | 
|  | VERIFY_RAISES_ASSERT(qr.logAbsDeterminant()) | 
|  | } | 
|  |  | 
|  | void test_qr() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( qr(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_2( qr(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2),internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | 
|  | CALL_SUBTEST_3(( qr_fixedsize<Matrix<float,3,4>, 2 >() )); | 
|  | CALL_SUBTEST_4(( qr_fixedsize<Matrix<double,6,2>, 4 >() )); | 
|  | CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,2,5>, 7 >() )); | 
|  | CALL_SUBTEST_11( qr(Matrix<float,1,1>()) ); | 
|  | } | 
|  |  | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( qr_invertible<MatrixXf>() ); | 
|  | CALL_SUBTEST_6( qr_invertible<MatrixXd>() ); | 
|  | CALL_SUBTEST_7( qr_invertible<MatrixXcf>() ); | 
|  | CALL_SUBTEST_8( qr_invertible<MatrixXcd>() ); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_9(qr_verify_assert<Matrix3f>()); | 
|  | CALL_SUBTEST_10(qr_verify_assert<Matrix3d>()); | 
|  | CALL_SUBTEST_1(qr_verify_assert<MatrixXf>()); | 
|  | CALL_SUBTEST_6(qr_verify_assert<MatrixXd>()); | 
|  | CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>()); | 
|  | CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>()); | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20)); | 
|  | } |