|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <limits> | 
|  | #include <Eigen/Eigenvalues> | 
|  |  | 
|  | template<typename MatrixType> void real_qz(const MatrixType& m) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | RealQZ.h | 
|  | */ | 
|  | using std::abs; | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | Index dim = m.cols(); | 
|  |  | 
|  | MatrixType A = MatrixType::Random(dim,dim), | 
|  | B = MatrixType::Random(dim,dim); | 
|  |  | 
|  |  | 
|  | // Regression test for bug 985: Randomly set rows or columns to zero | 
|  | Index k=internal::random<Index>(0, dim-1); | 
|  | switch(internal::random<int>(0,10)) { | 
|  | case 0: | 
|  | A.row(k).setZero(); break; | 
|  | case 1: | 
|  | A.col(k).setZero(); break; | 
|  | case 2: | 
|  | B.row(k).setZero(); break; | 
|  | case 3: | 
|  | B.col(k).setZero(); break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | RealQZ<MatrixType> qz(A,B); | 
|  |  | 
|  | VERIFY_IS_EQUAL(qz.info(), Success); | 
|  | // check for zeros | 
|  | bool all_zeros = true; | 
|  | for (Index i=0; i<A.cols(); i++) | 
|  | for (Index j=0; j<i; j++) { | 
|  | if (abs(qz.matrixT()(i,j))!=Scalar(0.0)) | 
|  | all_zeros = false; | 
|  | if (j<i-1 && abs(qz.matrixS()(i,j))!=Scalar(0.0)) | 
|  | all_zeros = false; | 
|  | if (j==i-1 && j>0 && abs(qz.matrixS()(i,j))!=Scalar(0.0) && abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0)) | 
|  | all_zeros = false; | 
|  | } | 
|  | VERIFY_IS_EQUAL(all_zeros, true); | 
|  | VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A); | 
|  | VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B); | 
|  | VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim)); | 
|  | VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim)); | 
|  | } | 
|  |  | 
|  | void test_real_qz() | 
|  | { | 
|  | int s = 0; | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( real_qz(Matrix4f()) ); | 
|  | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | 
|  | CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) ); | 
|  |  | 
|  | // some trivial but implementation-wise tricky cases | 
|  | CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) ); | 
|  | CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) ); | 
|  | CALL_SUBTEST_3( real_qz(Matrix<double,1,1>()) ); | 
|  | CALL_SUBTEST_4( real_qz(Matrix2d()) ); | 
|  | } | 
|  |  | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } |