|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "sparse.h" | 
|  |  | 
|  | template<typename SparseMatrixType> void sparse_product() | 
|  | { | 
|  | typedef typename SparseMatrixType::StorageIndex StorageIndex; | 
|  | Index n = 100; | 
|  | const Index rows  = internal::random<Index>(1,n); | 
|  | const Index cols  = internal::random<Index>(1,n); | 
|  | const Index depth = internal::random<Index>(1,n); | 
|  | typedef typename SparseMatrixType::Scalar Scalar; | 
|  | enum { Flags = SparseMatrixType::Flags }; | 
|  |  | 
|  | double density = (std::max)(8./(rows*cols), 0.2); | 
|  | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | 
|  | typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
|  | typedef Matrix<Scalar,1,Dynamic> RowDenseVector; | 
|  | typedef SparseVector<Scalar,0,StorageIndex> ColSpVector; | 
|  | typedef SparseVector<Scalar,RowMajor,StorageIndex> RowSpVector; | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  | Scalar s2 = internal::random<Scalar>(); | 
|  |  | 
|  | // test matrix-matrix product | 
|  | { | 
|  | DenseMatrix refMat2  = DenseMatrix::Zero(rows, depth); | 
|  | DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows); | 
|  | DenseMatrix refMat3  = DenseMatrix::Zero(depth, cols); | 
|  | DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth); | 
|  | DenseMatrix refMat4  = DenseMatrix::Zero(rows, cols); | 
|  | DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows); | 
|  | DenseMatrix refMat5  = DenseMatrix::Random(depth, cols); | 
|  | DenseMatrix refMat6  = DenseMatrix::Random(rows, rows); | 
|  | DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); | 
|  | //     DenseVector dv1 = DenseVector::Random(rows); | 
|  | SparseMatrixType m2 (rows, depth); | 
|  | SparseMatrixType m2t(depth, rows); | 
|  | SparseMatrixType m3 (depth, cols); | 
|  | SparseMatrixType m3t(cols, depth); | 
|  | SparseMatrixType m4 (rows, cols); | 
|  | SparseMatrixType m4t(cols, rows); | 
|  | SparseMatrixType m6(rows, rows); | 
|  | initSparse(density, refMat2,  m2); | 
|  | initSparse(density, refMat2t, m2t); | 
|  | initSparse(density, refMat3,  m3); | 
|  | initSparse(density, refMat3t, m3t); | 
|  | initSparse(density, refMat4,  m4); | 
|  | initSparse(density, refMat4t, m4t); | 
|  | initSparse(density, refMat6, m6); | 
|  |  | 
|  | //     int c = internal::random<int>(0,depth-1); | 
|  |  | 
|  | // sparse * sparse | 
|  | VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); | 
|  | VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); | 
|  | VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1); | 
|  | VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1); | 
|  | VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1); | 
|  | VERIFY_IS_APPROX(m4 = (m2+m2)*m3, refMat4 = (refMat2+refMat2)*refMat3); | 
|  | VERIFY_IS_APPROX(m4 = m2*m3.leftCols(cols/2), refMat4 = refMat2*refMat3.leftCols(cols/2)); | 
|  | VERIFY_IS_APPROX(m4 = m2*(m3+m3).leftCols(cols/2), refMat4 = refMat2*(refMat3+refMat3).leftCols(cols/2)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3); | 
|  | VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose()); | 
|  | VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose()); | 
|  |  | 
|  | // test aliasing | 
|  | m4 = m2; refMat4 = refMat2; | 
|  | VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3); | 
|  |  | 
|  | // sparse * dense matrix | 
|  | VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose()); | 
|  | VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=dm4+m2*refMat3, refMat4=refMat4+refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4+=m2*refMat3, refMat4+=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4-=m2*refMat3, refMat4-=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4.noalias()+=m2*refMat3, refMat4+=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4.noalias()-=m2*refMat3, refMat4-=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3)); | 
|  | VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5); | 
|  |  | 
|  | // sparse * dense vector | 
|  | VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3.col(0), refMat4.col(0)=refMat2*refMat3.col(0)); | 
|  | VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3t.transpose().col(0), refMat4.col(0)=refMat2*refMat3t.transpose().col(0)); | 
|  | VERIFY_IS_APPROX(dm4.col(0)=m2t.transpose()*refMat3.col(0), refMat4.col(0)=refMat2t.transpose()*refMat3.col(0)); | 
|  | VERIFY_IS_APPROX(dm4.col(0)=m2t.transpose()*refMat3t.transpose().col(0), refMat4.col(0)=refMat2t.transpose()*refMat3t.transpose().col(0)); | 
|  |  | 
|  | // dense * sparse | 
|  | VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=dm4+refMat2*m3, refMat4=refMat4+refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4+=refMat2*m3, refMat4+=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4-=refMat2*m3, refMat4-=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4.noalias()+=refMat2*m3, refMat4+=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4.noalias()-=refMat2*m3, refMat4-=refMat2*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); | 
|  | VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); | 
|  | VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); | 
|  |  | 
|  | // sparse * dense and dense * sparse outer product | 
|  | { | 
|  | Index c  = internal::random<Index>(0,depth-1); | 
|  | Index r  = internal::random<Index>(0,rows-1); | 
|  | Index c1 = internal::random<Index>(0,cols-1); | 
|  | Index r1 = internal::random<Index>(0,depth-1); | 
|  | DenseMatrix dm5  = DenseMatrix::Random(depth, cols); | 
|  |  | 
|  | VERIFY_IS_APPROX( m4=m2.col(c)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose()); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count()); | 
|  | VERIFY_IS_APPROX( m4=m2.middleCols(c,1)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose()); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count()); | 
|  | VERIFY_IS_APPROX(dm4=m2.col(c)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m4=dm5.col(c1)*m2.col(c).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose()); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count()); | 
|  | VERIFY_IS_APPROX(m4=dm5.col(c1)*m2.middleCols(c,1).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose()); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count()); | 
|  | VERIFY_IS_APPROX(dm4=dm5.col(c1)*m2.col(c).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX( m4=dm5.row(r1).transpose()*m2.col(c).transpose(), refMat4=dm5.row(r1).transpose()*refMat2.col(c).transpose()); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count()); | 
|  | VERIFY_IS_APPROX(dm4=dm5.row(r1).transpose()*m2.col(c).transpose(), refMat4=dm5.row(r1).transpose()*refMat2.col(c).transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX( m4=m2.row(r).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose()); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count()); | 
|  | VERIFY_IS_APPROX( m4=m2.middleRows(r,1).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose()); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count()); | 
|  | VERIFY_IS_APPROX(dm4=m2.row(r).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX( m4=dm5.col(c1)*m2.row(r), refMat4=dm5.col(c1)*refMat2.row(r)); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count()); | 
|  | VERIFY_IS_APPROX( m4=dm5.col(c1)*m2.middleRows(r,1), refMat4=dm5.col(c1)*refMat2.row(r)); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count()); | 
|  | VERIFY_IS_APPROX(dm4=dm5.col(c1)*m2.row(r), refMat4=dm5.col(c1)*refMat2.row(r)); | 
|  |  | 
|  | VERIFY_IS_APPROX( m4=dm5.row(r1).transpose()*m2.row(r), refMat4=dm5.row(r1).transpose()*refMat2.row(r)); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count()); | 
|  | VERIFY_IS_APPROX(dm4=dm5.row(r1).transpose()*m2.row(r), refMat4=dm5.row(r1).transpose()*refMat2.row(r)); | 
|  | } | 
|  |  | 
|  | VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6); | 
|  |  | 
|  | // sparse matrix * sparse vector | 
|  | ColSpVector cv0(cols), cv1; | 
|  | DenseVector dcv0(cols), dcv1; | 
|  | initSparse(2*density,dcv0, cv0); | 
|  |  | 
|  | RowSpVector rv0(depth), rv1; | 
|  | RowDenseVector drv0(depth), drv1(rv1); | 
|  | initSparse(2*density,drv0, rv0); | 
|  |  | 
|  | VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0); | 
|  | VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3); | 
|  | VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0); | 
|  | VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3); | 
|  | VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0); | 
|  | } | 
|  |  | 
|  | // test matrix - diagonal product | 
|  | { | 
|  | DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); | 
|  | DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); | 
|  | DenseMatrix d3 = DenseMatrix::Zero(rows, cols); | 
|  | DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(cols)); | 
|  | DiagonalMatrix<Scalar,Dynamic> d2(DenseVector::Random(rows)); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | SparseMatrixType m3(rows, cols); | 
|  | initSparse<Scalar>(density, refM2, m2); | 
|  | initSparse<Scalar>(density, refM3, m3); | 
|  | VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); | 
|  | VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2); | 
|  | VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2); | 
|  | VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose()); | 
|  |  | 
|  | // also check with a SparseWrapper: | 
|  | DenseVector v1 = DenseVector::Random(cols); | 
|  | DenseVector v2 = DenseVector::Random(rows); | 
|  | VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal()); | 
|  | VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal()); | 
|  | VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2); | 
|  | VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal()); | 
|  |  | 
|  | // evaluate to a dense matrix to check the .row() and .col() iterator functions | 
|  | VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1); | 
|  | VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2); | 
|  | VERIFY_IS_APPROX(d3=d2*m2, refM3=d2*refM2); | 
|  | VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose()); | 
|  | } | 
|  |  | 
|  | // test self-adjoint and triangular-view products | 
|  | { | 
|  | DenseMatrix b = DenseMatrix::Random(rows, rows); | 
|  | DenseMatrix x = DenseMatrix::Random(rows, rows); | 
|  | DenseMatrix refX = DenseMatrix::Random(rows, rows); | 
|  | DenseMatrix refUp = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refLo = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refS = DenseMatrix::Zero(rows, rows); | 
|  | DenseMatrix refA = DenseMatrix::Zero(rows, rows); | 
|  | SparseMatrixType mUp(rows, rows); | 
|  | SparseMatrixType mLo(rows, rows); | 
|  | SparseMatrixType mS(rows, rows); | 
|  | SparseMatrixType mA(rows, rows); | 
|  | initSparse<Scalar>(density, refA, mA); | 
|  | do { | 
|  | initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); | 
|  | } while (refUp.isZero()); | 
|  | refLo = refUp.adjoint(); | 
|  | mLo = mUp.adjoint(); | 
|  | refS = refUp + refLo; | 
|  | refS.diagonal() *= 0.5; | 
|  | mS = mUp + mLo; | 
|  | // TODO be able to address the diagonal.... | 
|  | for (int k=0; k<mS.outerSize(); ++k) | 
|  | for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it) | 
|  | if (it.index() == k) | 
|  | it.valueRef() *= 0.5; | 
|  |  | 
|  | VERIFY_IS_APPROX(refS.adjoint(), refS); | 
|  | VERIFY_IS_APPROX(mS.adjoint(), mS); | 
|  | VERIFY_IS_APPROX(mS, refS); | 
|  | VERIFY_IS_APPROX(x=mS*b, refX=refS*b); | 
|  |  | 
|  | // sparse selfadjointView with dense matrices | 
|  | VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b); | 
|  | VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b); | 
|  | VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b); | 
|  |  | 
|  | // sparse selfadjointView with sparse matrices | 
|  | SparseMatrixType mSres(rows,rows); | 
|  | VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS, | 
|  | refX = refLo.template selfadjointView<Lower>()*refS); | 
|  | VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(), | 
|  | refX = refS * refLo.template selfadjointView<Lower>()); | 
|  |  | 
|  | // sparse triangularView with dense matrices | 
|  | VERIFY_IS_APPROX(x=mA.template triangularView<Upper>()*b, refX=refA.template triangularView<Upper>()*b); | 
|  | VERIFY_IS_APPROX(x=mA.template triangularView<Lower>()*b, refX=refA.template triangularView<Lower>()*b); | 
|  | VERIFY_IS_APPROX(x=b*mA.template triangularView<Upper>(), refX=b*refA.template triangularView<Upper>()); | 
|  | VERIFY_IS_APPROX(x=b*mA.template triangularView<Lower>(), refX=b*refA.template triangularView<Lower>()); | 
|  |  | 
|  | // sparse triangularView with sparse matrices | 
|  | VERIFY_IS_APPROX(mSres = mA.template triangularView<Lower>()*mS,   refX = refA.template triangularView<Lower>()*refS); | 
|  | VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Lower>(), refX = refS * refA.template triangularView<Lower>()); | 
|  | VERIFY_IS_APPROX(mSres = mA.template triangularView<Upper>()*mS,   refX = refA.template triangularView<Upper>()*refS); | 
|  | VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Upper>(), refX = refS * refA.template triangularView<Upper>()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // New test for Bug in SparseTimeDenseProduct | 
|  | template<typename SparseMatrixType, typename DenseMatrixType> void sparse_product_regression_test() | 
|  | { | 
|  | // This code does not compile with afflicted versions of the bug | 
|  | SparseMatrixType sm1(3,2); | 
|  | DenseMatrixType m2(2,2); | 
|  | sm1.setZero(); | 
|  | m2.setZero(); | 
|  |  | 
|  | DenseMatrixType m3 = sm1*m2; | 
|  |  | 
|  |  | 
|  | // This code produces a segfault with afflicted versions of another SparseTimeDenseProduct | 
|  | // bug | 
|  |  | 
|  | SparseMatrixType sm2(20000,2); | 
|  | sm2.setZero(); | 
|  | DenseMatrixType m4(sm2*m2); | 
|  |  | 
|  | VERIFY_IS_APPROX( m4(0,0), 0.0 ); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | void bug_942() | 
|  | { | 
|  | typedef Matrix<Scalar, Dynamic, 1>     Vector; | 
|  | typedef SparseMatrix<Scalar, ColMajor> ColSpMat; | 
|  | typedef SparseMatrix<Scalar, RowMajor> RowSpMat; | 
|  | ColSpMat cmA(1,1); | 
|  | cmA.insert(0,0) = 1; | 
|  |  | 
|  | RowSpMat rmA(1,1); | 
|  | rmA.insert(0,0) = 1; | 
|  |  | 
|  | Vector d(1); | 
|  | d[0] = 2; | 
|  |  | 
|  | double res = 2; | 
|  |  | 
|  | VERIFY_IS_APPROX( ( cmA*d.asDiagonal() ).eval().coeff(0,0), res ); | 
|  | VERIFY_IS_APPROX( ( d.asDiagonal()*rmA ).eval().coeff(0,0), res ); | 
|  | VERIFY_IS_APPROX( ( rmA*d.asDiagonal() ).eval().coeff(0,0), res ); | 
|  | VERIFY_IS_APPROX( ( d.asDiagonal()*cmA ).eval().coeff(0,0), res ); | 
|  | } | 
|  |  | 
|  | void test_sparse_product() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,ColMajor> >()) ); | 
|  | CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,RowMajor> >()) ); | 
|  | CALL_SUBTEST_1( (bug_942<double>()) ); | 
|  | CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, ColMajor > >()) ); | 
|  | CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) ); | 
|  | CALL_SUBTEST_3( (sparse_product<SparseMatrix<float,ColMajor,long int> >()) ); | 
|  | CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) ); | 
|  | } | 
|  | } |