|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename T> EIGEN_DONT_INLINE T copy(const T& x) | 
|  | { | 
|  | return x; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void stable_norm(const MatrixType& m) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | StableNorm.h | 
|  | */ | 
|  | using std::sqrt; | 
|  | using std::abs; | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | bool complex_real_product_ok = true; | 
|  |  | 
|  | // Check the basic machine-dependent constants. | 
|  | { | 
|  | int ibeta, it, iemin, iemax; | 
|  |  | 
|  | ibeta = std::numeric_limits<RealScalar>::radix;         // base for floating-point numbers | 
|  | it    = std::numeric_limits<RealScalar>::digits;        // number of base-beta digits in mantissa | 
|  | iemin = std::numeric_limits<RealScalar>::min_exponent;  // minimum exponent | 
|  | iemax = std::numeric_limits<RealScalar>::max_exponent;  // maximum exponent | 
|  |  | 
|  | VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) | 
|  | && "the stable norm algorithm cannot be guaranteed on this computer"); | 
|  |  | 
|  | Scalar inf = std::numeric_limits<RealScalar>::infinity(); | 
|  | if(NumTraits<Scalar>::IsComplex && (numext::isnan)(inf*RealScalar(1)) ) | 
|  | { | 
|  | complex_real_product_ok = false; | 
|  | static bool first = true; | 
|  | if(first) | 
|  | std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " << inf*RealScalar(1) << std::endl; | 
|  | first = false; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | // get a non-zero random factor | 
|  | Scalar factor = internal::random<Scalar>(); | 
|  | while(numext::abs2(factor)<RealScalar(1e-4)) | 
|  | factor = internal::random<Scalar>(); | 
|  | Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); | 
|  |  | 
|  | factor = internal::random<Scalar>(); | 
|  | while(numext::abs2(factor)<RealScalar(1e-4)) | 
|  | factor = internal::random<Scalar>(); | 
|  | Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); | 
|  |  | 
|  | MatrixType  vzero = MatrixType::Zero(rows, cols), | 
|  | vrand = MatrixType::Random(rows, cols), | 
|  | vbig(rows, cols), | 
|  | vsmall(rows,cols); | 
|  |  | 
|  | vbig.fill(big); | 
|  | vsmall.fill(small); | 
|  |  | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); | 
|  | VERIFY_IS_APPROX(vrand.stableNorm(),      vrand.norm()); | 
|  | VERIFY_IS_APPROX(vrand.blueNorm(),        vrand.norm()); | 
|  | VERIFY_IS_APPROX(vrand.hypotNorm(),       vrand.norm()); | 
|  |  | 
|  | RealScalar size = static_cast<RealScalar>(m.size()); | 
|  |  | 
|  | // test numext::isfinite | 
|  | VERIFY(!(numext::isfinite)( std::numeric_limits<RealScalar>::infinity())); | 
|  | VERIFY(!(numext::isfinite)(sqrt(-abs(big)))); | 
|  |  | 
|  | // test overflow | 
|  | VERIFY((numext::isfinite)(sqrt(size)*abs(big))); | 
|  | VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail | 
|  | VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big)); | 
|  | VERIFY_IS_APPROX(vbig.blueNorm(),   sqrt(size)*abs(big)); | 
|  | VERIFY_IS_APPROX(vbig.hypotNorm(),  sqrt(size)*abs(big)); | 
|  |  | 
|  | // test underflow | 
|  | VERIFY((numext::isfinite)(sqrt(size)*abs(small))); | 
|  | VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())),   abs(sqrt(size)*small)); // here the default norm must fail | 
|  | VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small)); | 
|  | VERIFY_IS_APPROX(vsmall.blueNorm(),   sqrt(size)*abs(small)); | 
|  | VERIFY_IS_APPROX(vsmall.hypotNorm(),  sqrt(size)*abs(small)); | 
|  |  | 
|  | // Test compilation of cwise() version | 
|  | VERIFY_IS_APPROX(vrand.colwise().stableNorm(),      vrand.colwise().norm()); | 
|  | VERIFY_IS_APPROX(vrand.colwise().blueNorm(),        vrand.colwise().norm()); | 
|  | VERIFY_IS_APPROX(vrand.colwise().hypotNorm(),       vrand.colwise().norm()); | 
|  | VERIFY_IS_APPROX(vrand.rowwise().stableNorm(),      vrand.rowwise().norm()); | 
|  | VERIFY_IS_APPROX(vrand.rowwise().blueNorm(),        vrand.rowwise().norm()); | 
|  | VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(),       vrand.rowwise().norm()); | 
|  |  | 
|  | // test NaN, +inf, -inf | 
|  | MatrixType v; | 
|  | Index i = internal::random<Index>(0,rows-1); | 
|  | Index j = internal::random<Index>(0,cols-1); | 
|  |  | 
|  | // NaN | 
|  | { | 
|  | v = vrand; | 
|  | v(i,j) = std::numeric_limits<RealScalar>::quiet_NaN(); | 
|  | VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY((numext::isnan)(v.squaredNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.norm()));          VERIFY((numext::isnan)(v.norm())); | 
|  | VERIFY(!(numext::isfinite)(v.stableNorm()));    VERIFY((numext::isnan)(v.stableNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY((numext::isnan)(v.blueNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY((numext::isnan)(v.hypotNorm())); | 
|  | } | 
|  |  | 
|  | // +inf | 
|  | { | 
|  | v = vrand; | 
|  | v(i,j) = std::numeric_limits<RealScalar>::infinity(); | 
|  | VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY(isPlusInf(v.squaredNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.norm()));          VERIFY(isPlusInf(v.norm())); | 
|  | VERIFY(!(numext::isfinite)(v.stableNorm())); | 
|  | if(complex_real_product_ok){ | 
|  | VERIFY(isPlusInf(v.stableNorm())); | 
|  | } | 
|  | VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY(isPlusInf(v.blueNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY(isPlusInf(v.hypotNorm())); | 
|  | } | 
|  |  | 
|  | // -inf | 
|  | { | 
|  | v = vrand; | 
|  | v(i,j) = -std::numeric_limits<RealScalar>::infinity(); | 
|  | VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY(isPlusInf(v.squaredNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.norm()));          VERIFY(isPlusInf(v.norm())); | 
|  | VERIFY(!(numext::isfinite)(v.stableNorm())); | 
|  | if(complex_real_product_ok) { | 
|  | VERIFY(isPlusInf(v.stableNorm())); | 
|  | } | 
|  | VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY(isPlusInf(v.blueNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY(isPlusInf(v.hypotNorm())); | 
|  | } | 
|  |  | 
|  | // mix | 
|  | { | 
|  | Index i2 = internal::random<Index>(0,rows-1); | 
|  | Index j2 = internal::random<Index>(0,cols-1); | 
|  | v = vrand; | 
|  | v(i,j) = -std::numeric_limits<RealScalar>::infinity(); | 
|  | v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN(); | 
|  | VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY((numext::isnan)(v.squaredNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.norm()));          VERIFY((numext::isnan)(v.norm())); | 
|  | VERIFY(!(numext::isfinite)(v.stableNorm()));    VERIFY((numext::isnan)(v.stableNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY((numext::isnan)(v.blueNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY((numext::isnan)(v.hypotNorm())); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_stable_norm() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) ); | 
|  | CALL_SUBTEST_2( stable_norm(Vector4d()) ); | 
|  | CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) ); | 
|  | CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) ); | 
|  | CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) ); | 
|  | } | 
|  | } |