| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/AutoDiff> | 
 |  | 
 | template<typename Scalar> | 
 | EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y) | 
 | { | 
 |   using namespace std; | 
 | //   return x+std::sin(y); | 
 |   EIGEN_ASM_COMMENT("mybegin"); | 
 |   return static_cast<Scalar>(x*2 - pow(x,2) + 2*sqrt(y*y) - 4 * sin(x) + 2 * cos(y) - exp(-0.5*x*x)); | 
 |   //return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2; | 
 |   EIGEN_ASM_COMMENT("myend"); | 
 | } | 
 |  | 
 | template<typename Vector> | 
 | EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p) | 
 | { | 
 |   typedef typename Vector::Scalar Scalar; | 
 |   return (p-Vector(Scalar(-1),Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p); | 
 | } | 
 |  | 
 | template<typename _Scalar, int NX=Dynamic, int NY=Dynamic> | 
 | struct TestFunc1 | 
 | { | 
 |   typedef _Scalar Scalar; | 
 |   enum { | 
 |     InputsAtCompileTime = NX, | 
 |     ValuesAtCompileTime = NY | 
 |   }; | 
 |   typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; | 
 |   typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; | 
 |   typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; | 
 |  | 
 |   int m_inputs, m_values; | 
 |  | 
 |   TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} | 
 |   TestFunc1(int inputs, int values) : m_inputs(inputs), m_values(values) {} | 
 |  | 
 |   int inputs() const { return m_inputs; } | 
 |   int values() const { return m_values; } | 
 |  | 
 |   template<typename T> | 
 |   void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const | 
 |   { | 
 |     Matrix<T,ValuesAtCompileTime,1>& v = *_v; | 
 |  | 
 |     v[0] = 2 * x[0] * x[0] + x[0] * x[1]; | 
 |     v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; | 
 |     if(inputs()>2) | 
 |     { | 
 |       v[0] += 0.5 * x[2]; | 
 |       v[1] += x[2]; | 
 |     } | 
 |     if(values()>2) | 
 |     { | 
 |       v[2] = 3 * x[1] * x[0] * x[0]; | 
 |     } | 
 |     if (inputs()>2 && values()>2) | 
 |       v[2] *= x[2]; | 
 |   } | 
 |  | 
 |   void operator() (const InputType& x, ValueType* v, JacobianType* _j) const | 
 |   { | 
 |     (*this)(x, v); | 
 |  | 
 |     if(_j) | 
 |     { | 
 |       JacobianType& j = *_j; | 
 |  | 
 |       j(0,0) = 4 * x[0] + x[1]; | 
 |       j(1,0) = 3 * x[1]; | 
 |  | 
 |       j(0,1) = x[0]; | 
 |       j(1,1) = 3 * x[0] + 2 * 0.5 * x[1]; | 
 |  | 
 |       if (inputs()>2) | 
 |       { | 
 |         j(0,2) = 0.5; | 
 |         j(1,2) = 1; | 
 |       } | 
 |       if(values()>2) | 
 |       { | 
 |         j(2,0) = 3 * x[1] * 2 * x[0]; | 
 |         j(2,1) = 3 * x[0] * x[0]; | 
 |       } | 
 |       if (inputs()>2 && values()>2) | 
 |       { | 
 |         j(2,0) *= x[2]; | 
 |         j(2,1) *= x[2]; | 
 |  | 
 |         j(2,2) = 3 * x[1] * x[0] * x[0]; | 
 |         j(2,2) = 3 * x[1] * x[0] * x[0]; | 
 |       } | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | template<typename Func> void forward_jacobian(const Func& f) | 
 | { | 
 |     typename Func::InputType x = Func::InputType::Random(f.inputs()); | 
 |     typename Func::ValueType y(f.values()), yref(f.values()); | 
 |     typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs()); | 
 |  | 
 |     jref.setZero(); | 
 |     yref.setZero(); | 
 |     f(x,&yref,&jref); | 
 | //     std::cerr << y.transpose() << "\n\n";; | 
 | //     std::cerr << j << "\n\n";; | 
 |  | 
 |     j.setZero(); | 
 |     y.setZero(); | 
 |     AutoDiffJacobian<Func> autoj(f); | 
 |     autoj(x, &y, &j); | 
 | //     std::cerr << y.transpose() << "\n\n";; | 
 | //     std::cerr << j << "\n\n";; | 
 |  | 
 |     VERIFY_IS_APPROX(y, yref); | 
 |     VERIFY_IS_APPROX(j, jref); | 
 | } | 
 |  | 
 |  | 
 | // TODO also check actual derivatives! | 
 | void test_autodiff_scalar() | 
 | { | 
 |   Vector2f p = Vector2f::Random(); | 
 |   typedef AutoDiffScalar<Vector2f> AD; | 
 |   AD ax(p.x(),Vector2f::UnitX()); | 
 |   AD ay(p.y(),Vector2f::UnitY()); | 
 |   AD res = foo<AD>(ax,ay); | 
 |   VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y())); | 
 | } | 
 |  | 
 | // TODO also check actual derivatives! | 
 | void test_autodiff_vector() | 
 | { | 
 |   Vector2f p = Vector2f::Random(); | 
 |   typedef AutoDiffScalar<Vector2f> AD; | 
 |   typedef Matrix<AD,2,1> VectorAD; | 
 |   VectorAD ap = p.cast<AD>(); | 
 |   ap.x().derivatives() = Vector2f::UnitX(); | 
 |   ap.y().derivatives() = Vector2f::UnitY(); | 
 |    | 
 |   AD res = foo<VectorAD>(ap); | 
 |   VERIFY_IS_APPROX(res.value(), foo(p)); | 
 | } | 
 |  | 
 | void test_autodiff_jacobian() | 
 | { | 
 |   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) )); | 
 |   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) )); | 
 |   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) )); | 
 |   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) )); | 
 |   CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) )); | 
 | } | 
 |  | 
 | void test_autodiff() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( test_autodiff_scalar() ); | 
 |     CALL_SUBTEST_2( test_autodiff_vector() ); | 
 |     CALL_SUBTEST_3( test_autodiff_jacobian() ); | 
 |   } | 
 | } | 
 |  |