|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de> | 
|  | // Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de> | 
|  | // Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  |  | 
|  | #include "sparse.h" | 
|  | #include <Eigen/SparseExtra> | 
|  | #include <Eigen/KroneckerProduct> | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void check_dimension(const MatrixType& ab, const int rows,  const int cols) | 
|  | { | 
|  | VERIFY_IS_EQUAL(ab.rows(), rows); | 
|  | VERIFY_IS_EQUAL(ab.cols(), cols); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void check_kronecker_product(const MatrixType& ab) | 
|  | { | 
|  | VERIFY_IS_EQUAL(ab.rows(), 6); | 
|  | VERIFY_IS_EQUAL(ab.cols(), 6); | 
|  | VERIFY_IS_EQUAL(ab.nonZeros(),  36); | 
|  | VERIFY_IS_APPROX(ab.coeff(0,0), -0.4017367630386106); | 
|  | VERIFY_IS_APPROX(ab.coeff(0,1),  0.1056863433932735); | 
|  | VERIFY_IS_APPROX(ab.coeff(0,2), -0.7255206194554212); | 
|  | VERIFY_IS_APPROX(ab.coeff(0,3),  0.1908653336744706); | 
|  | VERIFY_IS_APPROX(ab.coeff(0,4),  0.350864567234111); | 
|  | VERIFY_IS_APPROX(ab.coeff(0,5), -0.0923032108308013); | 
|  | VERIFY_IS_APPROX(ab.coeff(1,0),  0.415417514804677); | 
|  | VERIFY_IS_APPROX(ab.coeff(1,1), -0.2369227701722048); | 
|  | VERIFY_IS_APPROX(ab.coeff(1,2),  0.7502275131458511); | 
|  | VERIFY_IS_APPROX(ab.coeff(1,3), -0.4278731019742696); | 
|  | VERIFY_IS_APPROX(ab.coeff(1,4), -0.3628129162264507); | 
|  | VERIFY_IS_APPROX(ab.coeff(1,5),  0.2069210808481275); | 
|  | VERIFY_IS_APPROX(ab.coeff(2,0),  0.05465890160863986); | 
|  | VERIFY_IS_APPROX(ab.coeff(2,1), -0.2634092511419858); | 
|  | VERIFY_IS_APPROX(ab.coeff(2,2),  0.09871180285793758); | 
|  | VERIFY_IS_APPROX(ab.coeff(2,3), -0.4757066334017702); | 
|  | VERIFY_IS_APPROX(ab.coeff(2,4), -0.04773740823058334); | 
|  | VERIFY_IS_APPROX(ab.coeff(2,5),  0.2300535609645254); | 
|  | VERIFY_IS_APPROX(ab.coeff(3,0), -0.8172945853260133); | 
|  | VERIFY_IS_APPROX(ab.coeff(3,1),  0.2150086428359221); | 
|  | VERIFY_IS_APPROX(ab.coeff(3,2),  0.5825113847292743); | 
|  | VERIFY_IS_APPROX(ab.coeff(3,3), -0.1532433770097174); | 
|  | VERIFY_IS_APPROX(ab.coeff(3,4), -0.329383387282399); | 
|  | VERIFY_IS_APPROX(ab.coeff(3,5),  0.08665207912033064); | 
|  | VERIFY_IS_APPROX(ab.coeff(4,0),  0.8451267514863225); | 
|  | VERIFY_IS_APPROX(ab.coeff(4,1), -0.481996458918977); | 
|  | VERIFY_IS_APPROX(ab.coeff(4,2), -0.6023482390791535); | 
|  | VERIFY_IS_APPROX(ab.coeff(4,3),  0.3435339347164565); | 
|  | VERIFY_IS_APPROX(ab.coeff(4,4),  0.3406002157428891); | 
|  | VERIFY_IS_APPROX(ab.coeff(4,5), -0.1942526344200915); | 
|  | VERIFY_IS_APPROX(ab.coeff(5,0),  0.1111982482925399); | 
|  | VERIFY_IS_APPROX(ab.coeff(5,1), -0.5358806424754169); | 
|  | VERIFY_IS_APPROX(ab.coeff(5,2), -0.07925446559335647); | 
|  | VERIFY_IS_APPROX(ab.coeff(5,3),  0.3819388757769038); | 
|  | VERIFY_IS_APPROX(ab.coeff(5,4),  0.04481475387219876); | 
|  | VERIFY_IS_APPROX(ab.coeff(5,5), -0.2159688616158057); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void check_sparse_kronecker_product(const MatrixType& ab) | 
|  | { | 
|  | VERIFY_IS_EQUAL(ab.rows(), 12); | 
|  | VERIFY_IS_EQUAL(ab.cols(), 10); | 
|  | VERIFY_IS_EQUAL(ab.nonZeros(), 3*2); | 
|  | VERIFY_IS_APPROX(ab.coeff(3,0), -0.04); | 
|  | VERIFY_IS_APPROX(ab.coeff(5,1),  0.05); | 
|  | VERIFY_IS_APPROX(ab.coeff(0,6), -0.08); | 
|  | VERIFY_IS_APPROX(ab.coeff(2,7),  0.10); | 
|  | VERIFY_IS_APPROX(ab.coeff(6,8),  0.12); | 
|  | VERIFY_IS_APPROX(ab.coeff(8,9), -0.15); | 
|  | } | 
|  |  | 
|  |  | 
|  | void test_kronecker_product() | 
|  | { | 
|  | // DM = dense matrix; SM = sparse matrix | 
|  |  | 
|  | Matrix<double, 2, 3> DM_a; | 
|  | SparseMatrix<double> SM_a(2,3); | 
|  | SM_a.insert(0,0) = DM_a.coeffRef(0,0) = -0.4461540300782201; | 
|  | SM_a.insert(0,1) = DM_a.coeffRef(0,1) = -0.8057364375283049; | 
|  | SM_a.insert(0,2) = DM_a.coeffRef(0,2) =  0.3896572459516341; | 
|  | SM_a.insert(1,0) = DM_a.coeffRef(1,0) = -0.9076572187376921; | 
|  | SM_a.insert(1,1) = DM_a.coeffRef(1,1) =  0.6469156566545853; | 
|  | SM_a.insert(1,2) = DM_a.coeffRef(1,2) = -0.3658010398782789; | 
|  |  | 
|  | MatrixXd             DM_b(3,2); | 
|  | SparseMatrix<double> SM_b(3,2); | 
|  | SM_b.insert(0,0) = DM_b.coeffRef(0,0) =  0.9004440976767099; | 
|  | SM_b.insert(0,1) = DM_b.coeffRef(0,1) = -0.2368830858139832; | 
|  | SM_b.insert(1,0) = DM_b.coeffRef(1,0) = -0.9311078389941825; | 
|  | SM_b.insert(1,1) = DM_b.coeffRef(1,1) =  0.5310335762980047; | 
|  | SM_b.insert(2,0) = DM_b.coeffRef(2,0) = -0.1225112806872035; | 
|  | SM_b.insert(2,1) = DM_b.coeffRef(2,1) =  0.5903998022741264; | 
|  |  | 
|  | SparseMatrix<double,RowMajor> SM_row_a(SM_a), SM_row_b(SM_b); | 
|  |  | 
|  | // test DM_fixedSize = kroneckerProduct(DM_block,DM) | 
|  | Matrix<double, 6, 6> DM_fix_ab = kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b); | 
|  |  | 
|  | CALL_SUBTEST(check_kronecker_product(DM_fix_ab)); | 
|  | CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b))); | 
|  |  | 
|  | for(int i=0;i<DM_fix_ab.rows();++i) | 
|  | for(int j=0;j<DM_fix_ab.cols();++j) | 
|  | VERIFY_IS_APPROX(kroneckerProduct(DM_a,DM_b).coeff(i,j), DM_fix_ab(i,j)); | 
|  |  | 
|  | // test DM_block = kroneckerProduct(DM,DM) | 
|  | MatrixXd DM_block_ab(10,15); | 
|  | DM_block_ab.block<6,6>(2,5) = kroneckerProduct(DM_a,DM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(DM_block_ab.block<6,6>(2,5))); | 
|  |  | 
|  | // test DM = kroneckerProduct(DM,DM) | 
|  | MatrixXd DM_ab = kroneckerProduct(DM_a,DM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(DM_ab)); | 
|  | CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a,DM_b))); | 
|  |  | 
|  | // test SM = kroneckerProduct(SM,DM) | 
|  | SparseMatrix<double> SM_ab = kroneckerProduct(SM_a,DM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab)); | 
|  | SparseMatrix<double,RowMajor> SM_ab2 = kroneckerProduct(SM_a,DM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab2)); | 
|  | CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a,DM_b))); | 
|  |  | 
|  | // test SM = kroneckerProduct(DM,SM) | 
|  | SM_ab.setZero(); | 
|  | SM_ab.insert(0,0)=37.0; | 
|  | SM_ab = kroneckerProduct(DM_a,SM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab)); | 
|  | SM_ab2.setZero(); | 
|  | SM_ab2.insert(0,0)=37.0; | 
|  | SM_ab2 = kroneckerProduct(DM_a,SM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab2)); | 
|  | CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a,SM_b))); | 
|  |  | 
|  | // test SM = kroneckerProduct(SM,SM) | 
|  | SM_ab.resize(2,33); | 
|  | SM_ab.insert(0,0)=37.0; | 
|  | SM_ab = kroneckerProduct(SM_a,SM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab)); | 
|  | SM_ab2.resize(5,11); | 
|  | SM_ab2.insert(0,0)=37.0; | 
|  | SM_ab2 = kroneckerProduct(SM_a,SM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab2)); | 
|  | CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a,SM_b))); | 
|  |  | 
|  | // test SM = kroneckerProduct(SM,SM) with sparse pattern | 
|  | SM_a.resize(4,5); | 
|  | SM_b.resize(3,2); | 
|  | SM_a.resizeNonZeros(0); | 
|  | SM_b.resizeNonZeros(0); | 
|  | SM_a.insert(1,0) = -0.1; | 
|  | SM_a.insert(0,3) = -0.2; | 
|  | SM_a.insert(2,4) =  0.3; | 
|  | SM_a.finalize(); | 
|  |  | 
|  | SM_b.insert(0,0) =  0.4; | 
|  | SM_b.insert(2,1) = -0.5; | 
|  | SM_b.finalize(); | 
|  | SM_ab.resize(1,1); | 
|  | SM_ab.insert(0,0)=37.0; | 
|  | SM_ab = kroneckerProduct(SM_a,SM_b); | 
|  | CALL_SUBTEST(check_sparse_kronecker_product(SM_ab)); | 
|  |  | 
|  | // test dimension of result of DM = kroneckerProduct(DM,DM) | 
|  | MatrixXd DM_a2(2,1); | 
|  | MatrixXd DM_b2(5,4); | 
|  | MatrixXd DM_ab2 = kroneckerProduct(DM_a2,DM_b2); | 
|  | CALL_SUBTEST(check_dimension(DM_ab2,2*5,1*4)); | 
|  | DM_a2.resize(10,9); | 
|  | DM_b2.resize(4,8); | 
|  | DM_ab2 = kroneckerProduct(DM_a2,DM_b2); | 
|  | CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8)); | 
|  |  | 
|  | for(int i = 0; i < g_repeat; i++) | 
|  | { | 
|  | double density = Eigen::internal::random<double>(0.01,0.5); | 
|  | int ra = Eigen::internal::random<int>(1,50); | 
|  | int ca = Eigen::internal::random<int>(1,50); | 
|  | int rb = Eigen::internal::random<int>(1,50); | 
|  | int cb = Eigen::internal::random<int>(1,50); | 
|  | SparseMatrix<float,ColMajor> sA(ra,ca), sB(rb,cb), sC; | 
|  | SparseMatrix<float,RowMajor> sC2; | 
|  | MatrixXf dA(ra,ca), dB(rb,cb), dC; | 
|  | initSparse(density, dA, sA); | 
|  | initSparse(density, dB, sB); | 
|  |  | 
|  | sC = kroneckerProduct(sA,sB); | 
|  | dC = kroneckerProduct(dA,dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC),dC); | 
|  |  | 
|  | sC = kroneckerProduct(sA.transpose(),sB); | 
|  | dC = kroneckerProduct(dA.transpose(),dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC),dC); | 
|  |  | 
|  | sC = kroneckerProduct(sA.transpose(),sB.transpose()); | 
|  | dC = kroneckerProduct(dA.transpose(),dB.transpose()); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC),dC); | 
|  |  | 
|  | sC = kroneckerProduct(sA,sB.transpose()); | 
|  | dC = kroneckerProduct(dA,dB.transpose()); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC),dC); | 
|  |  | 
|  | sC2 = kroneckerProduct(sA,sB); | 
|  | dC = kroneckerProduct(dA,dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC2),dC); | 
|  |  | 
|  | sC2 = kroneckerProduct(dA,sB); | 
|  | dC = kroneckerProduct(dA,dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC2),dC); | 
|  |  | 
|  | sC2 = kroneckerProduct(sA,dB); | 
|  | dC = kroneckerProduct(dA,dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC2),dC); | 
|  |  | 
|  | sC2 = kroneckerProduct(2*sA,sB); | 
|  | dC = kroneckerProduct(2*dA,dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC2),dC); | 
|  | } | 
|  | } |