| namespace Eigen { |
| |
| /** \page TopicCustomizing_Plugins Extending MatrixBase (and other classes) |
| |
| In this section we will see how to add custom methods to MatrixBase. Since all expressions and matrix types inherit MatrixBase, adding a method to MatrixBase make it immediately available to all expressions ! A typical use case is, for instance, to make Eigen compatible with another API. |
| |
| You certainly know that in C++ it is not possible to add methods to an existing class. So how that's possible ? Here the trick is to include in the declaration of MatrixBase a file defined by the preprocessor token \c EIGEN_MATRIXBASE_PLUGIN: |
| \code |
| class MatrixBase { |
| // ... |
| #ifdef EIGEN_MATRIXBASE_PLUGIN |
| #include EIGEN_MATRIXBASE_PLUGIN |
| #endif |
| }; |
| \endcode |
| Therefore to extend MatrixBase with your own methods you just have to create a file with your method declaration and define EIGEN_MATRIXBASE_PLUGIN before you include any Eigen's header file. |
| |
| You can extend many of the other classes used in Eigen by defining similarly named preprocessor symbols. For instance, define \c EIGEN_ARRAYBASE_PLUGIN if you want to extend the ArrayBase class. A full list of classes that can be extended in this way and the corresponding preprocessor symbols can be found on our page \ref TopicPreprocessorDirectives. |
| |
| Here is an example of an extension file for adding methods to MatrixBase: \n |
| \b MatrixBaseAddons.h |
| \code |
| inline Scalar at(uint i, uint j) const { return this->operator()(i,j); } |
| inline Scalar& at(uint i, uint j) { return this->operator()(i,j); } |
| inline Scalar at(uint i) const { return this->operator[](i); } |
| inline Scalar& at(uint i) { return this->operator[](i); } |
| |
| inline RealScalar squaredLength() const { return squaredNorm(); } |
| inline RealScalar length() const { return norm(); } |
| inline RealScalar invLength(void) const { return fast_inv_sqrt(squaredNorm()); } |
| |
| template<typename OtherDerived> |
| inline Scalar squaredDistanceTo(const MatrixBase<OtherDerived>& other) const |
| { return (derived() - other.derived()).squaredNorm(); } |
| |
| template<typename OtherDerived> |
| inline RealScalar distanceTo(const MatrixBase<OtherDerived>& other) const |
| { return internal::sqrt(derived().squaredDistanceTo(other)); } |
| |
| inline void scaleTo(RealScalar l) { RealScalar vl = norm(); if (vl>1e-9) derived() *= (l/vl); } |
| |
| inline Transpose<Derived> transposed() {return this->transpose();} |
| inline const Transpose<Derived> transposed() const {return this->transpose();} |
| |
| inline uint minComponentId(void) const { int i; this->minCoeff(&i); return i; } |
| inline uint maxComponentId(void) const { int i; this->maxCoeff(&i); return i; } |
| |
| template<typename OtherDerived> |
| void makeFloor(const MatrixBase<OtherDerived>& other) { derived() = derived().cwiseMin(other.derived()); } |
| template<typename OtherDerived> |
| void makeCeil(const MatrixBase<OtherDerived>& other) { derived() = derived().cwiseMax(other.derived()); } |
| |
| const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const ConstantReturnType> |
| operator+(const Scalar& scalar) const |
| { return CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const ConstantReturnType>(derived(), Constant(rows(),cols(),scalar)); } |
| |
| friend const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ConstantReturnType, Derived> |
| operator+(const Scalar& scalar, const MatrixBase<Derived>& mat) |
| { return CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ConstantReturnType, Derived>(Constant(rows(),cols(),scalar), mat.derived()); } |
| \endcode |
| |
| Then one can add the following declaration in the config.h or whatever prerequisites header file of his project: |
| \code |
| #define EIGEN_MATRIXBASE_PLUGIN "MatrixBaseAddons.h" |
| \endcode |
| |
| */ |
| |
| } |