| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2013 Christian Seiler <christian@iwakd.de> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H |
| #define EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| class DynamicSGroup { |
| public: |
| inline explicit DynamicSGroup() : m_numIndices(1), m_elements(), m_generators(), m_globalFlags(0) { |
| m_elements.push_back(ge(Generator(0, 0, 0))); |
| } |
| inline DynamicSGroup(const DynamicSGroup& o) |
| : m_numIndices(o.m_numIndices), |
| m_elements(o.m_elements), |
| m_generators(o.m_generators), |
| m_globalFlags(o.m_globalFlags) {} |
| inline DynamicSGroup(DynamicSGroup&& o) |
| : m_numIndices(o.m_numIndices), m_elements(), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { |
| std::swap(m_elements, o.m_elements); |
| } |
| inline DynamicSGroup& operator=(const DynamicSGroup& o) { |
| m_numIndices = o.m_numIndices; |
| m_elements = o.m_elements; |
| m_generators = o.m_generators; |
| m_globalFlags = o.m_globalFlags; |
| return *this; |
| } |
| inline DynamicSGroup& operator=(DynamicSGroup&& o) { |
| m_numIndices = o.m_numIndices; |
| std::swap(m_elements, o.m_elements); |
| m_generators = o.m_generators; |
| m_globalFlags = o.m_globalFlags; |
| return *this; |
| } |
| |
| void add(int one, int two, int flags = 0); |
| |
| template <typename Gen_> |
| inline void add(Gen_) { |
| add(Gen_::One, Gen_::Two, Gen_::Flags); |
| } |
| inline void addSymmetry(int one, int two) { add(one, two, 0); } |
| inline void addAntiSymmetry(int one, int two) { add(one, two, NegationFlag); } |
| inline void addHermiticity(int one, int two) { add(one, two, ConjugationFlag); } |
| inline void addAntiHermiticity(int one, int two) { add(one, two, NegationFlag | ConjugationFlag); } |
| |
| template <typename Op, typename RV, typename Index, std::size_t N, typename... Args> |
| inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args) const { |
| eigen_assert(N >= m_numIndices && |
| "Can only apply symmetry group to objects that have at least the required amount of indices."); |
| for (std::size_t i = 0; i < size(); i++) |
| initial = Op::run(h_permute(i, idx, typename internal::gen_numeric_list<int, N>::type()), m_elements[i].flags, |
| initial, std::forward<Args>(args)...); |
| return initial; |
| } |
| |
| template <typename Op, typename RV, typename Index, typename... Args> |
| inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args) const { |
| eigen_assert(idx.size() >= m_numIndices && |
| "Can only apply symmetry group to objects that have at least the required amount of indices."); |
| for (std::size_t i = 0; i < size(); i++) |
| initial = Op::run(h_permute(i, idx), m_elements[i].flags, initial, std::forward<Args>(args)...); |
| return initial; |
| } |
| |
| inline int globalFlags() const { return m_globalFlags; } |
| inline std::size_t size() const { return m_elements.size(); } |
| |
| template <typename Tensor_, typename... IndexTypes> |
| inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, |
| typename Tensor_::Index firstIndex, |
| IndexTypes... otherIndices) const { |
| static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, |
| "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); |
| return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}}); |
| } |
| |
| template <typename Tensor_> |
| inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()( |
| Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const { |
| return internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup>(tensor, *this, indices); |
| } |
| |
| private: |
| struct GroupElement { |
| std::vector<int> representation; |
| int flags; |
| bool isId() const { |
| for (std::size_t i = 0; i < representation.size(); i++) |
| if (i != (size_t)representation[i]) return false; |
| return true; |
| } |
| }; |
| struct Generator { |
| int one; |
| int two; |
| int flags; |
| constexpr inline Generator(int one_, int two_, int flags_) : one(one_), two(two_), flags(flags_) {} |
| }; |
| |
| std::size_t m_numIndices; |
| std::vector<GroupElement> m_elements; |
| std::vector<Generator> m_generators; |
| int m_globalFlags; |
| |
| template <typename Index, std::size_t N, int... n> |
| inline std::array<Index, N> h_permute(std::size_t which, const std::array<Index, N>& idx, |
| internal::numeric_list<int, n...>) const { |
| return std::array<Index, N>{{idx[n >= m_numIndices ? n : m_elements[which].representation[n]]...}}; |
| } |
| |
| template <typename Index> |
| inline std::vector<Index> h_permute(std::size_t which, std::vector<Index> idx) const { |
| std::vector<Index> result; |
| result.reserve(idx.size()); |
| for (auto k : m_elements[which].representation) result.push_back(idx[k]); |
| for (std::size_t i = m_numIndices; i < idx.size(); i++) result.push_back(idx[i]); |
| return result; |
| } |
| |
| inline GroupElement ge(Generator const& g) const { |
| GroupElement result; |
| result.representation.reserve(m_numIndices); |
| result.flags = g.flags; |
| for (std::size_t k = 0; k < m_numIndices; k++) { |
| if (k == (std::size_t)g.one) |
| result.representation.push_back(g.two); |
| else if (k == (std::size_t)g.two) |
| result.representation.push_back(g.one); |
| else |
| result.representation.push_back(int(k)); |
| } |
| return result; |
| } |
| |
| GroupElement mul(GroupElement, GroupElement) const; |
| inline GroupElement mul(Generator g1, GroupElement g2) const { return mul(ge(g1), g2); } |
| |
| inline GroupElement mul(GroupElement g1, Generator g2) const { return mul(g1, ge(g2)); } |
| |
| inline GroupElement mul(Generator g1, Generator g2) const { return mul(ge(g1), ge(g2)); } |
| |
| inline int findElement(GroupElement e) const { |
| for (auto ee : m_elements) { |
| if (ee.representation == e.representation) return ee.flags ^ e.flags; |
| } |
| return -1; |
| } |
| |
| void updateGlobalFlags(int flagDiffOfSameGenerator); |
| }; |
| |
| // dynamic symmetry group that auto-adds the template parameters in the constructor |
| template <typename... Gen> |
| class DynamicSGroupFromTemplateArgs : public DynamicSGroup { |
| public: |
| inline DynamicSGroupFromTemplateArgs() : DynamicSGroup() { add_all(internal::type_list<Gen...>()); } |
| inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs const& other) : DynamicSGroup(other) {} |
| inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs&& other) : DynamicSGroup(other) {} |
| inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(const DynamicSGroupFromTemplateArgs<Gen...>& o) { |
| DynamicSGroup::operator=(o); |
| return *this; |
| } |
| inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(DynamicSGroupFromTemplateArgs<Gen...>&& o) { |
| DynamicSGroup::operator=(o); |
| return *this; |
| } |
| |
| private: |
| template <typename Gen1, typename... GenNext> |
| inline void add_all(internal::type_list<Gen1, GenNext...>) { |
| add(Gen1()); |
| add_all(internal::type_list<GenNext...>()); |
| } |
| |
| inline void add_all(internal::type_list<>) {} |
| }; |
| |
| inline DynamicSGroup::GroupElement DynamicSGroup::mul(GroupElement g1, GroupElement g2) const { |
| eigen_internal_assert(g1.representation.size() == m_numIndices); |
| eigen_internal_assert(g2.representation.size() == m_numIndices); |
| |
| GroupElement result; |
| result.representation.reserve(m_numIndices); |
| for (std::size_t i = 0; i < m_numIndices; i++) { |
| int v = g2.representation[g1.representation[i]]; |
| eigen_assert(v >= 0); |
| result.representation.push_back(v); |
| } |
| result.flags = g1.flags ^ g2.flags; |
| return result; |
| } |
| |
| inline void DynamicSGroup::add(int one, int two, int flags) { |
| eigen_assert(one >= 0); |
| eigen_assert(two >= 0); |
| eigen_assert(one != two); |
| |
| if ((std::size_t)one >= m_numIndices || (std::size_t)two >= m_numIndices) { |
| std::size_t newNumIndices = (one > two) ? one : two + 1; |
| for (auto& gelem : m_elements) { |
| gelem.representation.reserve(newNumIndices); |
| for (std::size_t i = m_numIndices; i < newNumIndices; i++) gelem.representation.push_back(i); |
| } |
| m_numIndices = newNumIndices; |
| } |
| |
| Generator g{one, two, flags}; |
| GroupElement e = ge(g); |
| |
| /* special case for first generator */ |
| if (m_elements.size() == 1) { |
| while (!e.isId()) { |
| m_elements.push_back(e); |
| e = mul(e, g); |
| } |
| |
| if (e.flags > 0) updateGlobalFlags(e.flags); |
| |
| // only add in case we didn't have identity |
| if (m_elements.size() > 1) m_generators.push_back(g); |
| return; |
| } |
| |
| int p = findElement(e); |
| if (p >= 0) { |
| updateGlobalFlags(p); |
| return; |
| } |
| |
| std::size_t coset_order = m_elements.size(); |
| m_elements.push_back(e); |
| for (std::size_t i = 1; i < coset_order; i++) m_elements.push_back(mul(m_elements[i], e)); |
| m_generators.push_back(g); |
| |
| std::size_t coset_rep = coset_order; |
| do { |
| for (auto g : m_generators) { |
| e = mul(m_elements[coset_rep], g); |
| p = findElement(e); |
| if (p < 0) { |
| // element not yet in group |
| m_elements.push_back(e); |
| for (std::size_t i = 1; i < coset_order; i++) m_elements.push_back(mul(m_elements[i], e)); |
| } else if (p > 0) { |
| updateGlobalFlags(p); |
| } |
| } |
| coset_rep += coset_order; |
| } while (coset_rep < m_elements.size()); |
| } |
| |
| inline void DynamicSGroup::updateGlobalFlags(int flagDiffOfSameGenerator) { |
| switch (flagDiffOfSameGenerator) { |
| case 0: |
| default: |
| // nothing happened |
| break; |
| case NegationFlag: |
| // every element is it's own negative => whole tensor is zero |
| m_globalFlags |= GlobalZeroFlag; |
| break; |
| case ConjugationFlag: |
| // every element is it's own conjugate => whole tensor is real |
| m_globalFlags |= GlobalRealFlag; |
| break; |
| case (NegationFlag | ConjugationFlag): |
| // every element is it's own negative conjugate => whole tensor is imaginary |
| m_globalFlags |= GlobalImagFlag; |
| break; |
| /* NOTE: |
| * since GlobalZeroFlag == GlobalRealFlag | GlobalImagFlag, if one generator |
| * causes the tensor to be real and the next one to be imaginary, this will |
| * trivially give the correct result |
| */ |
| } |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H |
| |
| /* |
| * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; |
| */ |