| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft |
| // Copyright 2003-2009 Mark Borgerding |
| |
| template <typename Scalar_> |
| struct kiss_cpx_fft { |
| typedef Scalar_ Scalar; |
| typedef std::complex<Scalar> Complex; |
| std::vector<Complex> m_twiddles; |
| std::vector<int> m_stageRadix; |
| std::vector<int> m_stageRemainder; |
| std::vector<Complex> m_scratchBuf; |
| bool m_inverse; |
| |
| inline void make_twiddles(int nfft, bool inverse) { |
| using numext::cos; |
| using numext::sin; |
| m_inverse = inverse; |
| m_twiddles.resize(nfft); |
| double phinc = 0.25 * double(EIGEN_PI) / nfft; |
| Scalar flip = inverse ? Scalar(1) : Scalar(-1); |
| m_twiddles[0] = Complex(Scalar(1), Scalar(0)); |
| if ((nfft & 1) == 0) m_twiddles[nfft / 2] = Complex(Scalar(-1), Scalar(0)); |
| int i = 1; |
| for (; i * 8 < nfft; ++i) { |
| Scalar c = Scalar(cos(i * 8 * phinc)); |
| Scalar s = Scalar(sin(i * 8 * phinc)); |
| m_twiddles[i] = Complex(c, s * flip); |
| m_twiddles[nfft - i] = Complex(c, -s * flip); |
| } |
| for (; i * 4 < nfft; ++i) { |
| Scalar c = Scalar(cos((2 * nfft - 8 * i) * phinc)); |
| Scalar s = Scalar(sin((2 * nfft - 8 * i) * phinc)); |
| m_twiddles[i] = Complex(s, c * flip); |
| m_twiddles[nfft - i] = Complex(s, -c * flip); |
| } |
| for (; i * 8 < 3 * nfft; ++i) { |
| Scalar c = Scalar(cos((8 * i - 2 * nfft) * phinc)); |
| Scalar s = Scalar(sin((8 * i - 2 * nfft) * phinc)); |
| m_twiddles[i] = Complex(-s, c * flip); |
| m_twiddles[nfft - i] = Complex(-s, -c * flip); |
| } |
| for (; i * 2 < nfft; ++i) { |
| Scalar c = Scalar(cos((4 * nfft - 8 * i) * phinc)); |
| Scalar s = Scalar(sin((4 * nfft - 8 * i) * phinc)); |
| m_twiddles[i] = Complex(-c, s * flip); |
| m_twiddles[nfft - i] = Complex(-c, -s * flip); |
| } |
| } |
| |
| void factorize(int nfft) { |
| // start factoring out 4's, then 2's, then 3,5,7,9,... |
| int n = nfft; |
| int p = 4; |
| do { |
| while (n % p) { |
| switch (p) { |
| case 4: |
| p = 2; |
| break; |
| case 2: |
| p = 3; |
| break; |
| default: |
| p += 2; |
| break; |
| } |
| if (p * p > n) p = n; // impossible to have a factor > sqrt(n) |
| } |
| n /= p; |
| m_stageRadix.push_back(p); |
| m_stageRemainder.push_back(n); |
| if (p > 5) m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic |
| } while (n > 1); |
| } |
| |
| template <typename Src_> |
| inline void work(int stage, Complex *xout, const Src_ *xin, size_t fstride, size_t in_stride) { |
| int p = m_stageRadix[stage]; |
| int m = m_stageRemainder[stage]; |
| Complex *Fout_beg = xout; |
| Complex *Fout_end = xout + p * m; |
| |
| if (m > 1) { |
| do { |
| // recursive call: |
| // DFT of size m*p performed by doing |
| // p instances of smaller DFTs of size m, |
| // each one takes a decimated version of the input |
| work(stage + 1, xout, xin, fstride * p, in_stride); |
| xin += fstride * in_stride; |
| } while ((xout += m) != Fout_end); |
| } else { |
| do { |
| *xout = *xin; |
| xin += fstride * in_stride; |
| } while (++xout != Fout_end); |
| } |
| xout = Fout_beg; |
| |
| // recombine the p smaller DFTs |
| switch (p) { |
| case 2: |
| bfly2(xout, fstride, m); |
| break; |
| case 3: |
| bfly3(xout, fstride, m); |
| break; |
| case 4: |
| bfly4(xout, fstride, m); |
| break; |
| case 5: |
| bfly5(xout, fstride, m); |
| break; |
| default: |
| bfly_generic(xout, fstride, m, p); |
| break; |
| } |
| } |
| |
| inline void bfly2(Complex *Fout, const size_t fstride, int m) { |
| for (int k = 0; k < m; ++k) { |
| Complex t = Fout[m + k] * m_twiddles[k * fstride]; |
| Fout[m + k] = Fout[k] - t; |
| Fout[k] += t; |
| } |
| } |
| |
| inline void bfly4(Complex *Fout, const size_t fstride, const size_t m) { |
| Complex scratch[6]; |
| int negative_if_inverse = m_inverse * -2 + 1; |
| for (size_t k = 0; k < m; ++k) { |
| scratch[0] = Fout[k + m] * m_twiddles[k * fstride]; |
| scratch[1] = Fout[k + 2 * m] * m_twiddles[k * fstride * 2]; |
| scratch[2] = Fout[k + 3 * m] * m_twiddles[k * fstride * 3]; |
| scratch[5] = Fout[k] - scratch[1]; |
| |
| Fout[k] += scratch[1]; |
| scratch[3] = scratch[0] + scratch[2]; |
| scratch[4] = scratch[0] - scratch[2]; |
| scratch[4] = Complex(scratch[4].imag() * negative_if_inverse, -scratch[4].real() * negative_if_inverse); |
| |
| Fout[k + 2 * m] = Fout[k] - scratch[3]; |
| Fout[k] += scratch[3]; |
| Fout[k + m] = scratch[5] + scratch[4]; |
| Fout[k + 3 * m] = scratch[5] - scratch[4]; |
| } |
| } |
| |
| inline void bfly3(Complex *Fout, const size_t fstride, const size_t m) { |
| size_t k = m; |
| const size_t m2 = 2 * m; |
| Complex *tw1, *tw2; |
| Complex scratch[5]; |
| Complex epi3; |
| epi3 = m_twiddles[fstride * m]; |
| |
| tw1 = tw2 = &m_twiddles[0]; |
| |
| do { |
| scratch[1] = Fout[m] * *tw1; |
| scratch[2] = Fout[m2] * *tw2; |
| |
| scratch[3] = scratch[1] + scratch[2]; |
| scratch[0] = scratch[1] - scratch[2]; |
| tw1 += fstride; |
| tw2 += fstride * 2; |
| Fout[m] = Complex(Fout->real() - Scalar(.5) * scratch[3].real(), Fout->imag() - Scalar(.5) * scratch[3].imag()); |
| scratch[0] *= epi3.imag(); |
| *Fout += scratch[3]; |
| Fout[m2] = Complex(Fout[m].real() + scratch[0].imag(), Fout[m].imag() - scratch[0].real()); |
| Fout[m] += Complex(-scratch[0].imag(), scratch[0].real()); |
| ++Fout; |
| } while (--k); |
| } |
| |
| inline void bfly5(Complex *Fout, const size_t fstride, const size_t m) { |
| Complex *Fout0, *Fout1, *Fout2, *Fout3, *Fout4; |
| size_t u; |
| Complex scratch[13]; |
| Complex *twiddles = &m_twiddles[0]; |
| Complex *tw; |
| Complex ya, yb; |
| ya = twiddles[fstride * m]; |
| yb = twiddles[fstride * 2 * m]; |
| |
| Fout0 = Fout; |
| Fout1 = Fout0 + m; |
| Fout2 = Fout0 + 2 * m; |
| Fout3 = Fout0 + 3 * m; |
| Fout4 = Fout0 + 4 * m; |
| |
| tw = twiddles; |
| for (u = 0; u < m; ++u) { |
| scratch[0] = *Fout0; |
| |
| scratch[1] = *Fout1 * tw[u * fstride]; |
| scratch[2] = *Fout2 * tw[2 * u * fstride]; |
| scratch[3] = *Fout3 * tw[3 * u * fstride]; |
| scratch[4] = *Fout4 * tw[4 * u * fstride]; |
| |
| scratch[7] = scratch[1] + scratch[4]; |
| scratch[10] = scratch[1] - scratch[4]; |
| scratch[8] = scratch[2] + scratch[3]; |
| scratch[9] = scratch[2] - scratch[3]; |
| |
| *Fout0 += scratch[7]; |
| *Fout0 += scratch[8]; |
| |
| scratch[5] = scratch[0] + Complex((scratch[7].real() * ya.real()) + (scratch[8].real() * yb.real()), |
| (scratch[7].imag() * ya.real()) + (scratch[8].imag() * yb.real())); |
| |
| scratch[6] = Complex((scratch[10].imag() * ya.imag()) + (scratch[9].imag() * yb.imag()), |
| -(scratch[10].real() * ya.imag()) - (scratch[9].real() * yb.imag())); |
| |
| *Fout1 = scratch[5] - scratch[6]; |
| *Fout4 = scratch[5] + scratch[6]; |
| |
| scratch[11] = scratch[0] + Complex((scratch[7].real() * yb.real()) + (scratch[8].real() * ya.real()), |
| (scratch[7].imag() * yb.real()) + (scratch[8].imag() * ya.real())); |
| |
| scratch[12] = Complex(-(scratch[10].imag() * yb.imag()) + (scratch[9].imag() * ya.imag()), |
| (scratch[10].real() * yb.imag()) - (scratch[9].real() * ya.imag())); |
| |
| *Fout2 = scratch[11] + scratch[12]; |
| *Fout3 = scratch[11] - scratch[12]; |
| |
| ++Fout0; |
| ++Fout1; |
| ++Fout2; |
| ++Fout3; |
| ++Fout4; |
| } |
| } |
| |
| /* perform the butterfly for one stage of a mixed radix FFT */ |
| inline void bfly_generic(Complex *Fout, const size_t fstride, int m, int p) { |
| int u, k, q1, q; |
| Complex *twiddles = &m_twiddles[0]; |
| Complex t; |
| int Norig = static_cast<int>(m_twiddles.size()); |
| Complex *scratchbuf = &m_scratchBuf[0]; |
| |
| for (u = 0; u < m; ++u) { |
| k = u; |
| for (q1 = 0; q1 < p; ++q1) { |
| scratchbuf[q1] = Fout[k]; |
| k += m; |
| } |
| |
| k = u; |
| for (q1 = 0; q1 < p; ++q1) { |
| int twidx = 0; |
| Fout[k] = scratchbuf[0]; |
| for (q = 1; q < p; ++q) { |
| twidx += static_cast<int>(fstride) * k; |
| if (twidx >= Norig) twidx -= Norig; |
| t = scratchbuf[q] * twiddles[twidx]; |
| Fout[k] += t; |
| } |
| k += m; |
| } |
| } |
| } |
| }; |
| |
| template <typename Scalar_> |
| struct kissfft_impl { |
| typedef Scalar_ Scalar; |
| typedef std::complex<Scalar> Complex; |
| |
| void clear() { |
| m_plans.clear(); |
| m_realTwiddles.clear(); |
| } |
| |
| inline void fwd(Complex *dst, const Complex *src, int nfft) { get_plan(nfft, false).work(0, dst, src, 1, 1); } |
| |
| inline void fwd2(Complex *dst, const Complex *src, int n0, int n1) { |
| EIGEN_UNUSED_VARIABLE(dst); |
| EIGEN_UNUSED_VARIABLE(src); |
| EIGEN_UNUSED_VARIABLE(n0); |
| EIGEN_UNUSED_VARIABLE(n1); |
| } |
| |
| inline void inv2(Complex *dst, const Complex *src, int n0, int n1) { |
| EIGEN_UNUSED_VARIABLE(dst); |
| EIGEN_UNUSED_VARIABLE(src); |
| EIGEN_UNUSED_VARIABLE(n0); |
| EIGEN_UNUSED_VARIABLE(n1); |
| } |
| |
| // real-to-complex forward FFT |
| // perform two FFTs of src even and src odd |
| // then twiddle to recombine them into the half-spectrum format |
| // then fill in the conjugate symmetric half |
| inline void fwd(Complex *dst, const Scalar *src, int nfft) { |
| if (nfft & 3) { |
| // use generic mode for odd |
| m_tmpBuf1.resize(nfft); |
| get_plan(nfft, false).work(0, &m_tmpBuf1[0], src, 1, 1); |
| std::copy(m_tmpBuf1.begin(), m_tmpBuf1.begin() + (nfft >> 1) + 1, dst); |
| } else { |
| int ncfft = nfft >> 1; |
| int ncfft2 = nfft >> 2; |
| Complex *rtw = real_twiddles(ncfft2); |
| |
| // use optimized mode for even real |
| fwd(dst, reinterpret_cast<const Complex *>(src), ncfft); |
| Complex dc(dst[0].real() + dst[0].imag()); |
| Complex nyquist(dst[0].real() - dst[0].imag()); |
| int k; |
| for (k = 1; k <= ncfft2; ++k) { |
| Complex fpk = dst[k]; |
| Complex fpnk = conj(dst[ncfft - k]); |
| Complex f1k = fpk + fpnk; |
| Complex f2k = fpk - fpnk; |
| Complex tw = f2k * rtw[k - 1]; |
| dst[k] = (f1k + tw) * Scalar(.5); |
| dst[ncfft - k] = conj(f1k - tw) * Scalar(.5); |
| } |
| dst[0] = dc; |
| dst[ncfft] = nyquist; |
| } |
| } |
| |
| // inverse complex-to-complex |
| inline void inv(Complex *dst, const Complex *src, int nfft) { get_plan(nfft, true).work(0, dst, src, 1, 1); } |
| |
| // half-complex to scalar |
| inline void inv(Scalar *dst, const Complex *src, int nfft) { |
| if (nfft & 3) { |
| m_tmpBuf1.resize(nfft); |
| m_tmpBuf2.resize(nfft); |
| std::copy(src, src + (nfft >> 1) + 1, m_tmpBuf1.begin()); |
| for (int k = 1; k < (nfft >> 1) + 1; ++k) m_tmpBuf1[nfft - k] = conj(m_tmpBuf1[k]); |
| inv(&m_tmpBuf2[0], &m_tmpBuf1[0], nfft); |
| for (int k = 0; k < nfft; ++k) dst[k] = m_tmpBuf2[k].real(); |
| } else { |
| // optimized version for multiple of 4 |
| int ncfft = nfft >> 1; |
| int ncfft2 = nfft >> 2; |
| Complex *rtw = real_twiddles(ncfft2); |
| m_tmpBuf1.resize(ncfft); |
| m_tmpBuf1[0] = Complex(src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real()); |
| for (int k = 1; k <= ncfft / 2; ++k) { |
| Complex fk = src[k]; |
| Complex fnkc = conj(src[ncfft - k]); |
| Complex fek = fk + fnkc; |
| Complex tmp = fk - fnkc; |
| Complex fok = tmp * conj(rtw[k - 1]); |
| m_tmpBuf1[k] = fek + fok; |
| m_tmpBuf1[ncfft - k] = conj(fek - fok); |
| } |
| get_plan(ncfft, true).work(0, reinterpret_cast<Complex *>(dst), &m_tmpBuf1[0], 1, 1); |
| } |
| } |
| |
| protected: |
| typedef kiss_cpx_fft<Scalar> PlanData; |
| typedef std::map<int, PlanData> PlanMap; |
| |
| PlanMap m_plans; |
| std::map<int, std::vector<Complex> > m_realTwiddles; |
| std::vector<Complex> m_tmpBuf1; |
| std::vector<Complex> m_tmpBuf2; |
| |
| inline int PlanKey(int nfft, bool isinverse) const { return (nfft << 1) | int(isinverse); } |
| |
| inline PlanData &get_plan(int nfft, bool inverse) { |
| // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles |
| PlanData &pd = m_plans[PlanKey(nfft, inverse)]; |
| if (pd.m_twiddles.size() == 0) { |
| pd.make_twiddles(nfft, inverse); |
| pd.factorize(nfft); |
| } |
| return pd; |
| } |
| |
| inline Complex *real_twiddles(int ncfft2) { |
| using std::acos; |
| std::vector<Complex> &twidref = m_realTwiddles[ncfft2]; // creates new if not there |
| if ((int)twidref.size() != ncfft2) { |
| twidref.resize(ncfft2); |
| int ncfft = ncfft2 << 1; |
| Scalar pi = acos(Scalar(-1)); |
| for (int k = 1; k <= ncfft2; ++k) twidref[k - 1] = exp(Complex(0, -pi * (Scalar(k) / ncfft + Scalar(.5)))); |
| } |
| return &twidref[0]; |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |