| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template <typename MatrixType> | 
 | void array_for_matrix(const MatrixType& m) { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; | 
 |   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); | 
 |  | 
 |   ColVectorType cv1 = ColVectorType::Random(rows); | 
 |   RowVectorType rv1 = RowVectorType::Random(cols); | 
 |  | 
 |   Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(); | 
 |  | 
 |   // scalar addition | 
 |   VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array()); | 
 |   VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows, cols, s1) + m1); | 
 |   VERIFY_IS_APPROX(((m1 * Scalar(2)).array() - s2).matrix(), (m1 + m1) - MatrixType::Constant(rows, cols, s2)); | 
 |   m3 = m1; | 
 |   m3.array() += s2; | 
 |   VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix()); | 
 |   m3 = m1; | 
 |   m3.array() -= s1; | 
 |   VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix()); | 
 |  | 
 |   // reductions | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.squaredNorm()); | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.squaredNorm()); | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1 + m2).colwise().sum(), | 
 |                               (m1 + m2).squaredNorm()); | 
 |   VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1 - m2).rowwise().sum(), | 
 |                               (m1 - m2).squaredNorm()); | 
 |   VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar, Scalar>())); | 
 |  | 
 |   // vector-wise ops | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); | 
 |   m3 = m1; | 
 |   VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); | 
 |  | 
 |   // empty objects | 
 |   VERIFY_IS_EQUAL((m1.template block<0, Dynamic>(0, 0, 0, cols).colwise().sum()), RowVectorType::Zero(cols)); | 
 |   VERIFY_IS_EQUAL((m1.template block<Dynamic, 0>(0, 0, rows, 0).rowwise().sum()), ColVectorType::Zero(rows)); | 
 |   VERIFY_IS_EQUAL((m1.template block<0, Dynamic>(0, 0, 0, cols).colwise().prod()), RowVectorType::Ones(cols)); | 
 |   VERIFY_IS_EQUAL((m1.template block<Dynamic, 0>(0, 0, rows, 0).rowwise().prod()), ColVectorType::Ones(rows)); | 
 |  | 
 |   VERIFY_IS_EQUAL(m1.block(0, 0, 0, cols).colwise().sum(), RowVectorType::Zero(cols)); | 
 |   VERIFY_IS_EQUAL(m1.block(0, 0, rows, 0).rowwise().sum(), ColVectorType::Zero(rows)); | 
 |   VERIFY_IS_EQUAL(m1.block(0, 0, 0, cols).colwise().prod(), RowVectorType::Ones(cols)); | 
 |   VERIFY_IS_EQUAL(m1.block(0, 0, rows, 0).rowwise().prod(), ColVectorType::Ones(rows)); | 
 |  | 
 |   // verify the const accessors exist | 
 |   const Scalar& ref_m1 = m.matrix().array().coeffRef(0); | 
 |   const Scalar& ref_m2 = m.matrix().array().coeffRef(0, 0); | 
 |   const Scalar& ref_a1 = m.array().matrix().coeffRef(0); | 
 |   const Scalar& ref_a2 = m.array().matrix().coeffRef(0, 0); | 
 |   VERIFY(&ref_a1 == &ref_m1); | 
 |   VERIFY(&ref_a2 == &ref_m2); | 
 |  | 
 |   // Check write accessors: | 
 |   m1.array().coeffRef(0, 0) = 1; | 
 |   VERIFY_IS_APPROX(m1(0, 0), Scalar(1)); | 
 |   m1.array()(0, 0) = 2; | 
 |   VERIFY_IS_APPROX(m1(0, 0), Scalar(2)); | 
 |   m1.array().matrix().coeffRef(0, 0) = 3; | 
 |   VERIFY_IS_APPROX(m1(0, 0), Scalar(3)); | 
 |   m1.array().matrix()(0, 0) = 4; | 
 |   VERIFY_IS_APPROX(m1(0, 0), Scalar(4)); | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void comparisons(const MatrixType& m) { | 
 |   using std::abs; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); | 
 |  | 
 |   VERIFY(((m1.array() + Scalar(1)) > m1.array()).all()); | 
 |   VERIFY(((m1.array() - Scalar(1)) < m1.array()).all()); | 
 |   if (rows * cols > 1) { | 
 |     m3 = m1; | 
 |     m3(r, c) += 1; | 
 |     VERIFY(!(m1.array() < m3.array()).all()); | 
 |     VERIFY(!(m1.array() > m3.array()).all()); | 
 |   } | 
 |  | 
 |   // comparisons to scalar | 
 |   VERIFY((m1.array() != (m1(r, c) + 1)).any()); | 
 |   VERIFY((m1.array() > (m1(r, c) - 1)).any()); | 
 |   VERIFY((m1.array() < (m1(r, c) + 1)).any()); | 
 |   VERIFY((m1.array() == m1(r, c)).any()); | 
 |   VERIFY(m1.cwiseEqual(m1(r, c)).any()); | 
 |  | 
 |   // test Select | 
 |   VERIFY_IS_APPROX((m1.array() < m2.array()).select(m1, m2), m1.cwiseMin(m2)); | 
 |   VERIFY_IS_APPROX((m1.array() > m2.array()).select(m1, m2), m1.cwiseMax(m2)); | 
 |   Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff()) / Scalar(2); | 
 |   for (int j = 0; j < cols; ++j) | 
 |     for (int i = 0; i < rows; ++i) m3(i, j) = abs(m1(i, j)) < mid ? 0 : m1(i, j); | 
 |   VERIFY_IS_APPROX( | 
 |       (m1.array().abs() < MatrixType::Constant(rows, cols, mid).array()).select(MatrixType::Zero(rows, cols), m1), m3); | 
 |   // shorter versions: | 
 |   VERIFY_IS_APPROX((m1.array().abs() < MatrixType::Constant(rows, cols, mid).array()).select(0, m1), m3); | 
 |   VERIFY_IS_APPROX((m1.array().abs() >= MatrixType::Constant(rows, cols, mid).array()).select(m1, 0), m3); | 
 |   // even shorter version: | 
 |   VERIFY_IS_APPROX((m1.array().abs() < mid).select(0, m1), m3); | 
 |  | 
 |   // count | 
 |   VERIFY(((m1.array().abs() + 1) > RealScalar(0.1)).count() == rows * cols); | 
 |  | 
 |   // and/or | 
 |   VERIFY(((m1.array() < RealScalar(0)).matrix() && (m1.array() > RealScalar(0)).matrix()).count() == 0); | 
 |   VERIFY(((m1.array() < RealScalar(0)).matrix() || (m1.array() >= RealScalar(0)).matrix()).count() == rows * cols); | 
 |   RealScalar a = m1.cwiseAbs().mean(); | 
 |   VERIFY(((m1.array() < -a).matrix() || (m1.array() > a).matrix()).count() == (m1.cwiseAbs().array() > a).count()); | 
 |  | 
 |   typedef Matrix<Index, Dynamic, 1> VectorOfIndices; | 
 |  | 
 |   // TODO allows colwise/rowwise for array | 
 |   VERIFY_IS_APPROX(((m1.array().abs() + 1) > RealScalar(0.1)).matrix().colwise().count(), | 
 |                    VectorOfIndices::Constant(cols, rows).transpose()); | 
 |   VERIFY_IS_APPROX(((m1.array().abs() + 1) > RealScalar(0.1)).matrix().rowwise().count(), | 
 |                    VectorOfIndices::Constant(rows, cols)); | 
 | } | 
 |  | 
 | template <typename VectorType> | 
 | void lpNorm(const VectorType& v) { | 
 |   using std::sqrt; | 
 |   typedef typename VectorType::RealScalar RealScalar; | 
 |   VectorType u = VectorType::Random(v.size()); | 
 |  | 
 |   if (v.size() == 0) { | 
 |     VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), RealScalar(0)); | 
 |     VERIFY_IS_APPROX(u.template lpNorm<1>(), RealScalar(0)); | 
 |     VERIFY_IS_APPROX(u.template lpNorm<2>(), RealScalar(0)); | 
 |     VERIFY_IS_APPROX(u.template lpNorm<5>(), RealScalar(0)); | 
 |   } else { | 
 |     VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff()); | 
 |   } | 
 |  | 
 |   VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum()); | 
 |   VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum())); | 
 |   VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), | 
 |                    u.array().abs().pow(5).sum()); | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void cwise_min_max(const MatrixType& m) { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols); | 
 |  | 
 |   // min/max with array | 
 |   Scalar maxM1 = m1.maxCoeff(); | 
 |   Scalar minM1 = m1.minCoeff(); | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, minM1), m1.cwiseMin(MatrixType::Constant(rows, cols, minM1))); | 
 |   VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows, cols, maxM1))); | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows, cols, maxM1))); | 
 |   VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows, cols, minM1))); | 
 |  | 
 |   // min/max with scalar input | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, minM1), m1.cwiseMin(minM1)); | 
 |   VERIFY_IS_APPROX(m1, m1.cwiseMin(maxM1)); | 
 |   VERIFY_IS_APPROX(-m1, (-m1).cwiseMin(-minM1)); | 
 |   VERIFY_IS_APPROX(-m1.array(), ((-m1).array().min)(-minM1)); | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, maxM1), m1.cwiseMax(maxM1)); | 
 |   VERIFY_IS_APPROX(m1, m1.cwiseMax(minM1)); | 
 |   VERIFY_IS_APPROX(-m1, (-m1).cwiseMax(-maxM1)); | 
 |   VERIFY_IS_APPROX(-m1.array(), ((-m1).array().max)(-maxM1)); | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, minM1).array(), (m1.array().min)(minM1)); | 
 |   VERIFY_IS_APPROX(m1.array(), (m1.array().min)(maxM1)); | 
 |  | 
 |   VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, maxM1).array(), (m1.array().max)(maxM1)); | 
 |   VERIFY_IS_APPROX(m1.array(), (m1.array().max)(minM1)); | 
 |  | 
 |   // Test NaN propagation for min/max. | 
 |   if (!NumTraits<Scalar>::IsInteger) { | 
 |     m1(0, 0) = NumTraits<Scalar>::quiet_NaN(); | 
 |     // Elementwise. | 
 |     VERIFY((numext::isnan)(m1.template cwiseMax<PropagateNaN>(MatrixType::Constant(rows, cols, Scalar(1)))(0, 0))); | 
 |     VERIFY((numext::isnan)(m1.template cwiseMin<PropagateNaN>(MatrixType::Constant(rows, cols, Scalar(1)))(0, 0))); | 
 |     VERIFY(!(numext::isnan)(m1.template cwiseMax<PropagateNumbers>(MatrixType::Constant(rows, cols, Scalar(1)))(0, 0))); | 
 |     VERIFY(!(numext::isnan)(m1.template cwiseMin<PropagateNumbers>(MatrixType::Constant(rows, cols, Scalar(1)))(0, 0))); | 
 |     VERIFY((numext::isnan)(m1.template cwiseMax<PropagateNaN>(Scalar(1))(0, 0))); | 
 |     VERIFY((numext::isnan)(m1.template cwiseMin<PropagateNaN>(Scalar(1))(0, 0))); | 
 |     VERIFY(!(numext::isnan)(m1.template cwiseMax<PropagateNumbers>(Scalar(1))(0, 0))); | 
 |     VERIFY(!(numext::isnan)(m1.template cwiseMin<PropagateNumbers>(Scalar(1))(0, 0))); | 
 |  | 
 |     VERIFY((numext::isnan)( | 
 |         m1.array().template max<PropagateNaN>(MatrixType::Constant(rows, cols, Scalar(1)).array())(0, 0))); | 
 |     VERIFY((numext::isnan)( | 
 |         m1.array().template min<PropagateNaN>(MatrixType::Constant(rows, cols, Scalar(1)).array())(0, 0))); | 
 |     VERIFY(!(numext::isnan)( | 
 |         m1.array().template max<PropagateNumbers>(MatrixType::Constant(rows, cols, Scalar(1)).array())(0, 0))); | 
 |     VERIFY(!(numext::isnan)( | 
 |         m1.array().template min<PropagateNumbers>(MatrixType::Constant(rows, cols, Scalar(1)).array())(0, 0))); | 
 |     VERIFY((numext::isnan)(m1.array().template max<PropagateNaN>(Scalar(1))(0, 0))); | 
 |     VERIFY((numext::isnan)(m1.array().template min<PropagateNaN>(Scalar(1))(0, 0))); | 
 |     VERIFY(!(numext::isnan)(m1.array().template max<PropagateNumbers>(Scalar(1))(0, 0))); | 
 |     VERIFY(!(numext::isnan)(m1.array().template min<PropagateNumbers>(Scalar(1))(0, 0))); | 
 |  | 
 |     // Reductions. | 
 |     VERIFY((numext::isnan)(m1.template maxCoeff<PropagateNaN>())); | 
 |     VERIFY((numext::isnan)(m1.template minCoeff<PropagateNaN>())); | 
 |     if (m1.size() > 1) { | 
 |       VERIFY(!(numext::isnan)(m1.template maxCoeff<PropagateNumbers>())); | 
 |       VERIFY(!(numext::isnan)(m1.template minCoeff<PropagateNumbers>())); | 
 |     } else { | 
 |       VERIFY((numext::isnan)(m1.template maxCoeff<PropagateNumbers>())); | 
 |       VERIFY((numext::isnan)(m1.template minCoeff<PropagateNumbers>())); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <typename MatrixTraits> | 
 | void resize(const MatrixTraits& t) { | 
 |   typedef typename MatrixTraits::Scalar Scalar; | 
 |   typedef Matrix<Scalar, Dynamic, Dynamic> MatrixType; | 
 |   typedef Array<Scalar, Dynamic, Dynamic> Array2DType; | 
 |   typedef Matrix<Scalar, Dynamic, 1> VectorType; | 
 |   typedef Array<Scalar, Dynamic, 1> Array1DType; | 
 |  | 
 |   Index rows = t.rows(), cols = t.cols(); | 
 |  | 
 |   MatrixType m(rows, cols); | 
 |   VectorType v(rows); | 
 |   Array2DType a2(rows, cols); | 
 |   Array1DType a1(rows); | 
 |  | 
 |   m.array().resize(rows + 1, cols + 1); | 
 |   VERIFY(m.rows() == rows + 1 && m.cols() == cols + 1); | 
 |   a2.matrix().resize(rows + 1, cols + 1); | 
 |   VERIFY(a2.rows() == rows + 1 && a2.cols() == cols + 1); | 
 |   v.array().resize(cols); | 
 |   VERIFY(v.size() == cols); | 
 |   a1.matrix().resize(cols); | 
 |   VERIFY(a1.size() == cols); | 
 | } | 
 |  | 
 | template <int> | 
 | void regression_bug_654() { | 
 |   ArrayXf a = RowVectorXf(3); | 
 |   VectorXf v = Array<float, 1, Dynamic>(3); | 
 | } | 
 |  | 
 | // Check propagation of LvalueBit through Array/Matrix-Wrapper | 
 | template <int> | 
 | void regrrssion_bug_1410() { | 
 |   const Matrix4i M; | 
 |   const Array4i A; | 
 |   ArrayWrapper<const Matrix4i> MA = M.array(); | 
 |   MA.row(0); | 
 |   MatrixWrapper<const Array4i> AM = A.matrix(); | 
 |   AM.row(0); | 
 |  | 
 |   VERIFY((internal::traits<ArrayWrapper<const Matrix4i> >::Flags & LvalueBit) == 0); | 
 |   VERIFY((internal::traits<MatrixWrapper<const Array4i> >::Flags & LvalueBit) == 0); | 
 |  | 
 |   VERIFY((internal::traits<ArrayWrapper<Matrix4i> >::Flags & LvalueBit) == LvalueBit); | 
 |   VERIFY((internal::traits<MatrixWrapper<Array4i> >::Flags & LvalueBit) == LvalueBit); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(array_for_matrix) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1(array_for_matrix(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_2(array_for_matrix(Matrix2f())); | 
 |     CALL_SUBTEST_3(array_for_matrix(Matrix4d())); | 
 |     CALL_SUBTEST_4(array_for_matrix( | 
 |         MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |     CALL_SUBTEST_5(array_for_matrix( | 
 |         MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |     CALL_SUBTEST_6(array_for_matrix( | 
 |         MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |   } | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1(comparisons(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_2(comparisons(Matrix2f())); | 
 |     CALL_SUBTEST_3(comparisons(Matrix4d())); | 
 |     CALL_SUBTEST_5(comparisons( | 
 |         MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |     CALL_SUBTEST_6(comparisons( | 
 |         MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |   } | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1(cwise_min_max(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_2(cwise_min_max(Matrix2f())); | 
 |     CALL_SUBTEST_3(cwise_min_max(Matrix4d())); | 
 |     CALL_SUBTEST_5(cwise_min_max( | 
 |         MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |     CALL_SUBTEST_6(cwise_min_max( | 
 |         MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |   } | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1(lpNorm(Matrix<float, 1, 1>())); | 
 |     CALL_SUBTEST_2(lpNorm(Vector2f())); | 
 |     CALL_SUBTEST_7(lpNorm(Vector3d())); | 
 |     CALL_SUBTEST_8(lpNorm(Vector4f())); | 
 |     CALL_SUBTEST_5(lpNorm(VectorXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |     CALL_SUBTEST_4(lpNorm(VectorXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |   } | 
 |   CALL_SUBTEST_5(lpNorm(VectorXf(0))); | 
 |   CALL_SUBTEST_4(lpNorm(VectorXcf(0))); | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_4(resize( | 
 |         MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |     CALL_SUBTEST_5( | 
 |         resize(MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |     CALL_SUBTEST_6( | 
 |         resize(MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
 |   } | 
 |   CALL_SUBTEST_6(regression_bug_654<0>()); | 
 |   CALL_SUBTEST_6(regrrssion_bug_1410<0>()); | 
 | } |