| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template <typename MatrixType, typename Index, typename Scalar> |
| std::enable_if_t<!NumTraits<typename MatrixType::Scalar>::IsComplex, typename MatrixType::Scalar> block_real_only( |
| const MatrixType& m1, Index r1, Index r2, Index c1, Index c2, const Scalar& s1) { |
| // check cwise-Functions: |
| VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1)); |
| VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1)); |
| |
| VERIFY_IS_APPROX(m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).cwiseMin(s1), |
| m1.cwiseMin(s1).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1)); |
| VERIFY_IS_APPROX(m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).cwiseMax(s1), |
| m1.cwiseMax(s1).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1)); |
| |
| return Scalar(0); |
| } |
| |
| template <typename MatrixType, typename Index, typename Scalar> |
| std::enable_if_t<NumTraits<typename MatrixType::Scalar>::IsComplex, typename MatrixType::Scalar> block_real_only( |
| const MatrixType&, Index, Index, Index, Index, const Scalar&) { |
| return Scalar(0); |
| } |
| |
| // Check at compile-time that T1==T2, and at runtime-time that a==b |
| template <typename T1, typename T2> |
| std::enable_if_t<internal::is_same<T1, T2>::value, bool> is_same_block(const T1& a, const T2& b) { |
| return a.isApprox(b); |
| } |
| |
| template <typename MatrixType> |
| std::enable_if_t<((MatrixType::Flags & RowMajorBit) == 0), void> check_left_top(const MatrixType& m, Index r, Index c, |
| Index rows, Index /*unused*/) { |
| if (c > 0) VERIFY_IS_EQUAL(m.leftCols(c).coeff(r + c * rows), m(r, c)); |
| } |
| |
| template <typename MatrixType> |
| std::enable_if_t<((MatrixType::Flags & RowMajorBit) != 0), void> check_left_top(const MatrixType& m, Index r, Index c, |
| Index /*unused*/, Index cols) { |
| if (r > 0) VERIFY_IS_EQUAL(m.topRows(r).coeff(c + r * cols), m(r, c)); |
| } |
| |
| template <typename MatrixType> |
| void block(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; |
| typedef Matrix<Scalar, Dynamic, Dynamic, MatrixType::IsRowMajor ? RowMajor : ColMajor> DynamicMatrixType; |
| typedef Matrix<Scalar, Dynamic, 1> DynamicVectorType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), m1_copy = m1, m2 = MatrixType::Random(rows, cols), m3(rows, cols), |
| ones = MatrixType::Ones(rows, cols); |
| VectorType v1 = VectorType::Random(rows); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| Index r1 = internal::random<Index>(0, rows - 1); |
| Index r2 = internal::random<Index>(r1, rows - 1); |
| Index c1 = internal::random<Index>(0, cols - 1); |
| Index c2 = internal::random<Index>(c1, cols - 1); |
| |
| block_real_only(m1, r1, r2, c1, c1, s1); |
| |
| // check row() and col() |
| VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1)); |
| // check operator(), both constant and non-constant, on row() and col() |
| m1 = m1_copy; |
| m1.row(r1) += s1 * m1_copy.row(r2); |
| VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + s1 * m1_copy.row(r2)); |
| // check nested block xpr on lhs |
| m1.row(r1).row(0) += s1 * m1_copy.row(r2); |
| VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + Scalar(2) * s1 * m1_copy.row(r2)); |
| m1 = m1_copy; |
| m1.col(c1) += s1 * m1_copy.col(c2); |
| VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2)); |
| m1.col(c1).col(0) += s1 * m1_copy.col(c2); |
| VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2)); |
| |
| check_left_top(m1, r1, c1, rows, cols); |
| |
| // check block() |
| Matrix<Scalar, Dynamic, Dynamic> b1(1, 1); |
| b1(0, 0) = m1(r1, c1); |
| |
| RowVectorType br1(m1.block(r1, 0, 1, cols)); |
| VectorType bc1(m1.block(0, c1, rows, 1)); |
| VERIFY_IS_EQUAL(b1, m1.block(r1, c1, 1, 1)); |
| VERIFY_IS_EQUAL(m1.row(r1), br1); |
| VERIFY_IS_EQUAL(m1.col(c1), bc1); |
| // check operator(), both constant and non-constant, on block() |
| m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1) = s1 * m2.block(0, 0, r2 - r1 + 1, c2 - c1 + 1); |
| m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1)(r2 - r1, c2 - c1) = m2.block(0, 0, r2 - r1 + 1, c2 - c1 + 1)(0, 0); |
| |
| const Index BlockRows = 2; |
| const Index BlockCols = 5; |
| |
| if (rows >= 5 && cols >= 8) { |
| // test fixed block() as lvalue |
| m1.template block<BlockRows, BlockCols>(1, 1) *= s1; |
| // test operator() on fixed block() both as constant and non-constant |
| m1.template block<BlockRows, BlockCols>(1, 1)(0, 3) = m1.template block<2, 5>(1, 1)(1, 2); |
| // check that fixed block() and block() agree |
| Matrix<Scalar, Dynamic, Dynamic> b = m1.template block<BlockRows, BlockCols>(3, 3); |
| VERIFY_IS_EQUAL(b, m1.block(3, 3, BlockRows, BlockCols)); |
| |
| // same tests with mixed fixed/dynamic size |
| m1.template block<BlockRows, Dynamic>(1, 1, BlockRows, BlockCols) *= s1; |
| m1.template block<BlockRows, Dynamic>(1, 1, BlockRows, BlockCols)(0, 3) = m1.template block<2, 5>(1, 1)(1, 2); |
| Matrix<Scalar, Dynamic, Dynamic> b2 = m1.template block<Dynamic, BlockCols>(3, 3, 2, 5); |
| VERIFY_IS_EQUAL(b2, m1.block(3, 3, BlockRows, BlockCols)); |
| |
| VERIFY(is_same_block(m1.block(3, 3, BlockRows, BlockCols), |
| m1.block(3, 3, fix<Dynamic>(BlockRows), fix<Dynamic>(BlockCols)))); |
| VERIFY(is_same_block(m1.template block<BlockRows, Dynamic>(1, 1, BlockRows, BlockCols), |
| m1.block(1, 1, fix<BlockRows>, BlockCols))); |
| VERIFY(is_same_block(m1.template block<BlockRows, BlockCols>(1, 1, BlockRows, BlockCols), |
| m1.block(1, 1, fix<BlockRows>(), fix<BlockCols>))); |
| VERIFY(is_same_block(m1.template block<BlockRows, BlockCols>(1, 1, BlockRows, BlockCols), |
| m1.block(1, 1, fix<BlockRows>, fix<BlockCols>(BlockCols)))); |
| } |
| |
| if (rows > 2) { |
| // test sub vectors |
| VERIFY_IS_EQUAL(v1.template head<2>(), v1.block(0, 0, 2, 1)); |
| VERIFY_IS_EQUAL(v1.template head<2>(), v1.head(2)); |
| VERIFY_IS_EQUAL(v1.template head<2>(), v1.segment(0, 2)); |
| VERIFY_IS_EQUAL(v1.template head<2>(), v1.template segment<2>(0)); |
| Index i = rows - 2; |
| VERIFY_IS_EQUAL(v1.template tail<2>(), v1.block(i, 0, 2, 1)); |
| VERIFY_IS_EQUAL(v1.template tail<2>(), v1.tail(2)); |
| VERIFY_IS_EQUAL(v1.template tail<2>(), v1.segment(i, 2)); |
| VERIFY_IS_EQUAL(v1.template tail<2>(), v1.template segment<2>(i)); |
| i = internal::random<Index>(0, rows - 2); |
| VERIFY_IS_EQUAL(v1.segment(i, 2), v1.template segment<2>(i)); |
| } |
| |
| // stress some basic stuffs with block matrices |
| VERIFY_IS_EQUAL(numext::real(ones.col(c1).sum()), RealScalar(rows)); |
| VERIFY_IS_EQUAL(numext::real(ones.row(r1).sum()), RealScalar(cols)); |
| |
| VERIFY_IS_EQUAL(numext::real(ones.col(c1).dot(ones.col(c2))), RealScalar(rows)); |
| VERIFY_IS_EQUAL(numext::real(ones.row(r1).dot(ones.row(r2))), RealScalar(cols)); |
| |
| // check that linear acccessors works on blocks |
| m1 = m1_copy; |
| |
| // now test some block-inside-of-block. |
| |
| // expressions with direct access |
| VERIFY_IS_EQUAL((m1.block(r1, c1, rows - r1, cols - c1).block(r2 - r1, c2 - c1, rows - r2, cols - c2)), |
| (m1.block(r2, c2, rows - r2, cols - c2))); |
| VERIFY_IS_EQUAL((m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).row(0)), (m1.row(r1).segment(c1, c2 - c1 + 1))); |
| VERIFY_IS_EQUAL((m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).col(0)), (m1.col(c1).segment(r1, r2 - r1 + 1))); |
| VERIFY_IS_EQUAL((m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).transpose().col(0)), |
| (m1.row(r1).segment(c1, c2 - c1 + 1)).transpose()); |
| VERIFY_IS_EQUAL((m1.transpose().block(c1, r1, c2 - c1 + 1, r2 - r1 + 1).col(0)), |
| (m1.row(r1).segment(c1, c2 - c1 + 1)).transpose()); |
| |
| // expressions without direct access |
| VERIFY_IS_APPROX(((m1 + m2).block(r1, c1, rows - r1, cols - c1).block(r2 - r1, c2 - c1, rows - r2, cols - c2)), |
| ((m1 + m2).block(r2, c2, rows - r2, cols - c2))); |
| VERIFY_IS_APPROX(((m1 + m2).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).row(0)), |
| ((m1 + m2).row(r1).segment(c1, c2 - c1 + 1))); |
| VERIFY_IS_APPROX(((m1 + m2).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).row(0)), |
| ((m1 + m2).eval().row(r1).segment(c1, c2 - c1 + 1))); |
| VERIFY_IS_APPROX(((m1 + m2).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).col(0)), |
| ((m1 + m2).col(c1).segment(r1, r2 - r1 + 1))); |
| VERIFY_IS_APPROX(((m1 + m2).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).transpose().col(0)), |
| ((m1 + m2).row(r1).segment(c1, c2 - c1 + 1)).transpose()); |
| VERIFY_IS_APPROX(((m1 + m2).transpose().block(c1, r1, c2 - c1 + 1, r2 - r1 + 1).col(0)), |
| ((m1 + m2).row(r1).segment(c1, c2 - c1 + 1)).transpose()); |
| VERIFY_IS_APPROX(((m1 + m2).template block<Dynamic, 1>(r1, c1, r2 - r1 + 1, 1)), |
| ((m1 + m2).eval().col(c1).eval().segment(r1, r2 - r1 + 1))); |
| VERIFY_IS_APPROX(((m1 + m2).template block<1, Dynamic>(r1, c1, 1, c2 - c1 + 1)), |
| ((m1 + m2).eval().row(r1).eval().segment(c1, c2 - c1 + 1))); |
| VERIFY_IS_APPROX(((m1 + m2).transpose().template block<1, Dynamic>(c1, r1, 1, r2 - r1 + 1)), |
| ((m1 + m2).eval().col(c1).eval().segment(r1, r2 - r1 + 1)).transpose()); |
| VERIFY_IS_APPROX((m1 + m2).row(r1).eval(), (m1 + m2).eval().row(r1)); |
| VERIFY_IS_APPROX((m1 + m2).adjoint().col(r1).eval(), (m1 + m2).adjoint().eval().col(r1)); |
| VERIFY_IS_APPROX((m1 + m2).adjoint().row(c1).eval(), (m1 + m2).adjoint().eval().row(c1)); |
| VERIFY_IS_APPROX((m1 * 1).row(r1).segment(c1, c2 - c1 + 1).eval(), m1.row(r1).eval().segment(c1, c2 - c1 + 1).eval()); |
| VERIFY_IS_APPROX(m1.col(c1).reverse().segment(r1, r2 - r1 + 1).eval(), |
| m1.col(c1).reverse().eval().segment(r1, r2 - r1 + 1).eval()); |
| |
| VERIFY_IS_APPROX((m1 * 1).topRows(r1), m1.topRows(r1)); |
| VERIFY_IS_APPROX((m1 * 1).leftCols(c1), m1.leftCols(c1)); |
| VERIFY_IS_APPROX((m1 * 1).transpose().topRows(c1), m1.transpose().topRows(c1)); |
| VERIFY_IS_APPROX((m1 * 1).transpose().leftCols(r1), m1.transpose().leftCols(r1)); |
| VERIFY_IS_APPROX((m1 * 1).transpose().middleRows(c1, c2 - c1 + 1), m1.transpose().middleRows(c1, c2 - c1 + 1)); |
| VERIFY_IS_APPROX((m1 * 1).transpose().middleCols(r1, r2 - r1 + 1), m1.transpose().middleCols(r1, r2 - r1 + 1)); |
| |
| // evaluation into plain matrices from expressions with direct access (stress MapBase) |
| DynamicMatrixType dm; |
| DynamicVectorType dv; |
| dm.setZero(); |
| dm = m1.block(r1, c1, rows - r1, cols - c1).block(r2 - r1, c2 - c1, rows - r2, cols - c2); |
| VERIFY_IS_EQUAL(dm, (m1.block(r2, c2, rows - r2, cols - c2))); |
| dm.setZero(); |
| dv.setZero(); |
| dm = m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).row(0).transpose(); |
| dv = m1.row(r1).segment(c1, c2 - c1 + 1); |
| VERIFY_IS_EQUAL(dv, dm); |
| dm.setZero(); |
| dv.setZero(); |
| dm = m1.col(c1).segment(r1, r2 - r1 + 1); |
| dv = m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).col(0); |
| VERIFY_IS_EQUAL(dv, dm); |
| dm.setZero(); |
| dv.setZero(); |
| dm = m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).transpose().col(0); |
| dv = m1.row(r1).segment(c1, c2 - c1 + 1); |
| VERIFY_IS_EQUAL(dv, dm); |
| dm.setZero(); |
| dv.setZero(); |
| dm = m1.row(r1).segment(c1, c2 - c1 + 1).transpose(); |
| dv = m1.transpose().block(c1, r1, c2 - c1 + 1, r2 - r1 + 1).col(0); |
| VERIFY_IS_EQUAL(dv, dm); |
| |
| VERIFY_IS_EQUAL((m1.template block<Dynamic, 1>(1, 0, 0, 1)), m1.block(1, 0, 0, 1)); |
| VERIFY_IS_EQUAL((m1.template block<1, Dynamic>(0, 1, 1, 0)), m1.block(0, 1, 1, 0)); |
| VERIFY_IS_EQUAL(((m1 * 1).template block<Dynamic, 1>(1, 0, 0, 1)), m1.block(1, 0, 0, 1)); |
| VERIFY_IS_EQUAL(((m1 * 1).template block<1, Dynamic>(0, 1, 1, 0)), m1.block(0, 1, 1, 0)); |
| |
| VERIFY_IS_EQUAL(m1.template subVector<Horizontal>(r1), m1.row(r1)); |
| VERIFY_IS_APPROX((m1 + m1).template subVector<Horizontal>(r1), (m1 + m1).row(r1)); |
| VERIFY_IS_EQUAL(m1.template subVector<Vertical>(c1), m1.col(c1)); |
| VERIFY_IS_APPROX((m1 + m1).template subVector<Vertical>(c1), (m1 + m1).col(c1)); |
| VERIFY_IS_EQUAL(m1.template subVectors<Horizontal>(), m1.rows()); |
| VERIFY_IS_EQUAL(m1.template subVectors<Vertical>(), m1.cols()); |
| |
| if (rows >= 2 || cols >= 2) { |
| VERIFY_IS_EQUAL(int(m1.middleCols(0, 0).IsRowMajor), int(m1.IsRowMajor)); |
| VERIFY_IS_EQUAL(m1.middleCols(0, 0).outerSize(), m1.IsRowMajor ? rows : 0); |
| VERIFY_IS_EQUAL(m1.middleCols(0, 0).innerSize(), m1.IsRowMajor ? 0 : rows); |
| |
| VERIFY_IS_EQUAL(int(m1.middleRows(0, 0).IsRowMajor), int(m1.IsRowMajor)); |
| VERIFY_IS_EQUAL(m1.middleRows(0, 0).outerSize(), m1.IsRowMajor ? 0 : cols); |
| VERIFY_IS_EQUAL(m1.middleRows(0, 0).innerSize(), m1.IsRowMajor ? cols : 0); |
| } |
| } |
| |
| template <typename MatrixType> |
| std::enable_if_t<MatrixType::IsVectorAtCompileTime, void> compare_using_data_and_stride(const MatrixType& m) { |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| Index size = m.size(); |
| Index innerStride = m.innerStride(); |
| Index rowStride = m.rowStride(); |
| Index colStride = m.colStride(); |
| const typename MatrixType::Scalar* data = m.data(); |
| |
| for (int j = 0; j < cols; ++j) |
| for (int i = 0; i < rows; ++i) VERIFY(m.coeff(i, j) == data[i * rowStride + j * colStride]); |
| |
| VERIFY(innerStride == int((&m.coeff(1)) - (&m.coeff(0)))); |
| for (int i = 0; i < size; ++i) VERIFY(m.coeff(i) == data[i * innerStride]); |
| } |
| |
| template <typename MatrixType> |
| std::enable_if_t<!MatrixType::IsVectorAtCompileTime, void> compare_using_data_and_stride(const MatrixType& m) { |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| Index innerStride = m.innerStride(); |
| Index outerStride = m.outerStride(); |
| Index rowStride = m.rowStride(); |
| Index colStride = m.colStride(); |
| const typename MatrixType::Scalar* data = m.data(); |
| |
| for (int j = 0; j < cols; ++j) |
| for (int i = 0; i < rows; ++i) VERIFY(m.coeff(i, j) == data[i * rowStride + j * colStride]); |
| |
| for (int j = 0; j < cols; ++j) |
| for (int i = 0; i < rows; ++i) |
| VERIFY(m.coeff(i, j) == data[(MatrixType::Flags & RowMajorBit) ? i * outerStride + j * innerStride |
| : j * outerStride + i * innerStride]); |
| } |
| |
| template <typename MatrixType> |
| void data_and_stride(const MatrixType& m) { |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| Index r1 = internal::random<Index>(0, rows - 1); |
| Index r2 = internal::random<Index>(r1, rows - 1); |
| Index c1 = internal::random<Index>(0, cols - 1); |
| Index c2 = internal::random<Index>(c1, cols - 1); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols); |
| compare_using_data_and_stride(m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1)); |
| compare_using_data_and_stride(m1.transpose().block(c1, r1, c2 - c1 + 1, r2 - r1 + 1)); |
| compare_using_data_and_stride(m1.row(r1)); |
| compare_using_data_and_stride(m1.col(c1)); |
| compare_using_data_and_stride(m1.row(r1).transpose()); |
| compare_using_data_and_stride(m1.col(c1).transpose()); |
| } |
| |
| template <typename BaseXpr, typename Xpr = BaseXpr, int Depth = 0> |
| struct unwind_test_impl { |
| static void run(Xpr& xpr) { |
| Index startRow = internal::random<Index>(0, xpr.rows() / 5); |
| Index startCol = internal::random<Index>(0, xpr.cols() / 6); |
| Index rows = xpr.rows() / 3; |
| Index cols = xpr.cols() / 2; |
| // test equivalence of const expressions |
| const Block<const Xpr> constNestedBlock(xpr, startRow, startCol, rows, cols); |
| const Block<const BaseXpr> constUnwoundBlock = constNestedBlock.unwind(); |
| VERIFY_IS_CWISE_EQUAL(constNestedBlock, constUnwoundBlock); |
| // modify a random element in each representation and test equivalence of non-const expressions |
| Block<Xpr> nestedBlock(xpr, startRow, startCol, rows, cols); |
| Block<BaseXpr> unwoundBlock = nestedBlock.unwind(); |
| Index r1 = internal::random<Index>(0, rows - 1); |
| Index c1 = internal::random<Index>(0, cols - 1); |
| Index r2 = internal::random<Index>(0, rows - 1); |
| Index c2 = internal::random<Index>(0, cols - 1); |
| nestedBlock.coeffRef(r1, c1) = internal::random<typename DenseBase<Xpr>::Scalar>(); |
| unwoundBlock.coeffRef(r2, c2) = internal::random<typename DenseBase<Xpr>::Scalar>(); |
| VERIFY_IS_CWISE_EQUAL(nestedBlock, unwoundBlock); |
| unwind_test_impl<BaseXpr, Block<Xpr>, Depth + 1>::run(nestedBlock); |
| } |
| }; |
| |
| template <typename BaseXpr, typename Xpr> |
| struct unwind_test_impl<BaseXpr, Xpr, 4> { |
| static void run(const Xpr&) {} |
| }; |
| |
| template <typename BaseXpr> |
| void unwind_test(const BaseXpr&) { |
| BaseXpr xpr = BaseXpr::Random(100, 100); |
| unwind_test_impl<BaseXpr>::run(xpr); |
| } |
| |
| EIGEN_DECLARE_TEST(block) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(block(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_1(block(Matrix<float, 1, Dynamic>(internal::random(2, 50)))); |
| CALL_SUBTEST_1(block(Matrix<float, Dynamic, 1>(internal::random(2, 50)))); |
| CALL_SUBTEST_2(block(Matrix4d())); |
| CALL_SUBTEST_3(block(MatrixXcf(internal::random(2, 50), internal::random(2, 50)))); |
| CALL_SUBTEST_4(block(MatrixXi(internal::random(2, 50), internal::random(2, 50)))); |
| CALL_SUBTEST_5(block(MatrixXcd(internal::random(2, 50), internal::random(2, 50)))); |
| CALL_SUBTEST_6(block(MatrixXf(internal::random(2, 50), internal::random(2, 50)))); |
| CALL_SUBTEST_7(block(Matrix<int, Dynamic, Dynamic, RowMajor>(internal::random(2, 50), internal::random(2, 50)))); |
| |
| CALL_SUBTEST_8(block(Matrix<float, Dynamic, 4>(3, 4))); |
| CALL_SUBTEST_9(unwind_test(MatrixXf())); |
| |
| #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR |
| CALL_SUBTEST_6(data_and_stride(MatrixXf(internal::random(5, 50), internal::random(5, 50)))); |
| CALL_SUBTEST_7( |
| data_and_stride(Matrix<int, Dynamic, Dynamic, RowMajor>(internal::random(5, 50), internal::random(5, 50)))); |
| #endif |
| } |
| } |