|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Claire Maurice | 
|  | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_COMPLEX_SCHUR_H | 
|  | #define EIGEN_COMPLEX_SCHUR_H | 
|  |  | 
|  | #include "./HessenbergDecomposition.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  | template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg; | 
|  | } | 
|  |  | 
|  | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * | 
|  | * | 
|  | * \class ComplexSchur | 
|  | * | 
|  | * \brief Performs a complex Schur decomposition of a real or complex square matrix | 
|  | * | 
|  | * \tparam _MatrixType the type of the matrix of which we are | 
|  | * computing the Schur decomposition; this is expected to be an | 
|  | * instantiation of the Matrix class template. | 
|  | * | 
|  | * Given a real or complex square matrix A, this class computes the | 
|  | * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary | 
|  | * complex matrix, and T is a complex upper triangular matrix.  The | 
|  | * diagonal of the matrix T corresponds to the eigenvalues of the | 
|  | * matrix A. | 
|  | * | 
|  | * Call the function compute() to compute the Schur decomposition of | 
|  | * a given matrix. Alternatively, you can use the | 
|  | * ComplexSchur(const MatrixType&, bool) constructor which computes | 
|  | * the Schur decomposition at construction time. Once the | 
|  | * decomposition is computed, you can use the matrixU() and matrixT() | 
|  | * functions to retrieve the matrices U and V in the decomposition. | 
|  | * | 
|  | * \note This code is inspired from Jampack | 
|  | * | 
|  | * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver | 
|  | */ | 
|  | template<typename _MatrixType> class ComplexSchur | 
|  | { | 
|  | public: | 
|  | typedef _MatrixType MatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | /** \brief Scalar type for matrices of type \p _MatrixType. */ | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|  |  | 
|  | /** \brief Complex scalar type for \p _MatrixType. | 
|  | * | 
|  | * This is \c std::complex<Scalar> if #Scalar is real (e.g., | 
|  | * \c float or \c double) and just \c Scalar if #Scalar is | 
|  | * complex. | 
|  | */ | 
|  | typedef std::complex<RealScalar> ComplexScalar; | 
|  |  | 
|  | /** \brief Type for the matrices in the Schur decomposition. | 
|  | * | 
|  | * This is a square matrix with entries of type #ComplexScalar. | 
|  | * The size is the same as the size of \p _MatrixType. | 
|  | */ | 
|  | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType; | 
|  |  | 
|  | /** \brief Default constructor. | 
|  | * | 
|  | * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user | 
|  | * intends to perform decompositions via compute().  The \p size | 
|  | * parameter is only used as a hint. It is not an error to give a | 
|  | * wrong \p size, but it may impair performance. | 
|  | * | 
|  | * \sa compute() for an example. | 
|  | */ | 
|  | explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) | 
|  | : m_matT(size,size), | 
|  | m_matU(size,size), | 
|  | m_hess(size), | 
|  | m_isInitialized(false), | 
|  | m_matUisUptodate(false), | 
|  | m_maxIters(-1) | 
|  | {} | 
|  |  | 
|  | /** \brief Constructor; computes Schur decomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed. | 
|  | * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
|  | * | 
|  | * This constructor calls compute() to compute the Schur decomposition. | 
|  | * | 
|  | * \sa matrixT() and matrixU() for examples. | 
|  | */ | 
|  | template<typename InputType> | 
|  | explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true) | 
|  | : m_matT(matrix.rows(),matrix.cols()), | 
|  | m_matU(matrix.rows(),matrix.cols()), | 
|  | m_hess(matrix.rows()), | 
|  | m_isInitialized(false), | 
|  | m_matUisUptodate(false), | 
|  | m_maxIters(-1) | 
|  | { | 
|  | compute(matrix.derived(), computeU); | 
|  | } | 
|  |  | 
|  | /** \brief Returns the unitary matrix in the Schur decomposition. | 
|  | * | 
|  | * \returns A const reference to the matrix U. | 
|  | * | 
|  | * It is assumed that either the constructor | 
|  | * ComplexSchur(const MatrixType& matrix, bool computeU) or the | 
|  | * member function compute(const MatrixType& matrix, bool computeU) | 
|  | * has been called before to compute the Schur decomposition of a | 
|  | * matrix, and that \p computeU was set to true (the default | 
|  | * value). | 
|  | * | 
|  | * Example: \include ComplexSchur_matrixU.cpp | 
|  | * Output: \verbinclude ComplexSchur_matrixU.out | 
|  | */ | 
|  | const ComplexMatrixType& matrixU() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); | 
|  | eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition."); | 
|  | return m_matU; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the triangular matrix in the Schur decomposition. | 
|  | * | 
|  | * \returns A const reference to the matrix T. | 
|  | * | 
|  | * It is assumed that either the constructor | 
|  | * ComplexSchur(const MatrixType& matrix, bool computeU) or the | 
|  | * member function compute(const MatrixType& matrix, bool computeU) | 
|  | * has been called before to compute the Schur decomposition of a | 
|  | * matrix. | 
|  | * | 
|  | * Note that this function returns a plain square matrix. If you want to reference | 
|  | * only the upper triangular part, use: | 
|  | * \code schur.matrixT().triangularView<Upper>() \endcode | 
|  | * | 
|  | * Example: \include ComplexSchur_matrixT.cpp | 
|  | * Output: \verbinclude ComplexSchur_matrixT.out | 
|  | */ | 
|  | const ComplexMatrixType& matrixT() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); | 
|  | return m_matT; | 
|  | } | 
|  |  | 
|  | /** \brief Computes Schur decomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix  Square matrix whose Schur decomposition is to be computed. | 
|  | * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
|  |  | 
|  | * \returns    Reference to \c *this | 
|  | * | 
|  | * The Schur decomposition is computed by first reducing the | 
|  | * matrix to Hessenberg form using the class | 
|  | * HessenbergDecomposition. The Hessenberg matrix is then reduced | 
|  | * to triangular form by performing QR iterations with a single | 
|  | * shift. The cost of computing the Schur decomposition depends | 
|  | * on the number of iterations; as a rough guide, it may be taken | 
|  | * on the number of iterations; as a rough guide, it may be taken | 
|  | * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops | 
|  | * if \a computeU is false. | 
|  | * | 
|  | * Example: \include ComplexSchur_compute.cpp | 
|  | * Output: \verbinclude ComplexSchur_compute.out | 
|  | * | 
|  | * \sa compute(const MatrixType&, bool, Index) | 
|  | */ | 
|  | template<typename InputType> | 
|  | ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true); | 
|  |  | 
|  | /** \brief Compute Schur decomposition from a given Hessenberg matrix | 
|  | *  \param[in] matrixH Matrix in Hessenberg form H | 
|  | *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T | 
|  | *  \param computeU Computes the matriX U of the Schur vectors | 
|  | * \return Reference to \c *this | 
|  | * | 
|  | *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH | 
|  | *  using either the class HessenbergDecomposition or another mean. | 
|  | *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H | 
|  | *  When computeU is true, this routine computes the matrix U such that | 
|  | *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix | 
|  | * | 
|  | * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix | 
|  | * is not available, the user should give an identity matrix (Q.setIdentity()) | 
|  | * | 
|  | * \sa compute(const MatrixType&, bool) | 
|  | */ | 
|  | template<typename HessMatrixType, typename OrthMatrixType> | 
|  | ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ,  bool computeU=true); | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, \c NoConvergence otherwise. | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** \brief Sets the maximum number of iterations allowed. | 
|  | * | 
|  | * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size | 
|  | * of the matrix. | 
|  | */ | 
|  | ComplexSchur& setMaxIterations(Index maxIters) | 
|  | { | 
|  | m_maxIters = maxIters; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the maximum number of iterations. */ | 
|  | Index getMaxIterations() | 
|  | { | 
|  | return m_maxIters; | 
|  | } | 
|  |  | 
|  | /** \brief Maximum number of iterations per row. | 
|  | * | 
|  | * If not otherwise specified, the maximum number of iterations is this number times the size of the | 
|  | * matrix. It is currently set to 30. | 
|  | */ | 
|  | static const int m_maxIterationsPerRow = 30; | 
|  |  | 
|  | protected: | 
|  | ComplexMatrixType m_matT, m_matU; | 
|  | HessenbergDecomposition<MatrixType> m_hess; | 
|  | ComputationInfo m_info; | 
|  | bool m_isInitialized; | 
|  | bool m_matUisUptodate; | 
|  | Index m_maxIters; | 
|  |  | 
|  | private: | 
|  | bool subdiagonalEntryIsNeglegible(Index i); | 
|  | ComplexScalar computeShift(Index iu, Index iter); | 
|  | void reduceToTriangularForm(bool computeU); | 
|  | friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>; | 
|  | }; | 
|  |  | 
|  | /** If m_matT(i+1,i) is neglegible in floating point arithmetic | 
|  | * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and | 
|  | * return true, else return false. */ | 
|  | template<typename MatrixType> | 
|  | inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i) | 
|  | { | 
|  | RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1)); | 
|  | RealScalar sd = numext::norm1(m_matT.coeff(i+1,i)); | 
|  | if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon())) | 
|  | { | 
|  | m_matT.coeffRef(i+1,i) = ComplexScalar(0); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** Compute the shift in the current QR iteration. */ | 
|  | template<typename MatrixType> | 
|  | typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter) | 
|  | { | 
|  | using std::abs; | 
|  | if (iter == 10 || iter == 20) | 
|  | { | 
|  | // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f | 
|  | return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2))); | 
|  | } | 
|  |  | 
|  | // compute the shift as one of the eigenvalues of t, the 2x2 | 
|  | // diagonal block on the bottom of the active submatrix | 
|  | Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1); | 
|  | RealScalar normt = t.cwiseAbs().sum(); | 
|  | t /= normt;     // the normalization by sf is to avoid under/overflow | 
|  |  | 
|  | ComplexScalar b = t.coeff(0,1) * t.coeff(1,0); | 
|  | ComplexScalar c = t.coeff(0,0) - t.coeff(1,1); | 
|  | ComplexScalar disc = sqrt(c*c + RealScalar(4)*b); | 
|  | ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b; | 
|  | ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1); | 
|  | ComplexScalar eival1 = (trace + disc) / RealScalar(2); | 
|  | ComplexScalar eival2 = (trace - disc) / RealScalar(2); | 
|  | RealScalar eival1_norm = numext::norm1(eival1); | 
|  | RealScalar eival2_norm = numext::norm1(eival2); | 
|  | // A division by zero can only occur if eival1==eival2==0. | 
|  | // In this case, det==0, and all we have to do is checking that eival2_norm!=0 | 
|  | if(eival1_norm > eival2_norm) | 
|  | eival2 = det / eival1; | 
|  | else if(eival2_norm!=RealScalar(0)) | 
|  | eival1 = det / eival2; | 
|  |  | 
|  | // choose the eigenvalue closest to the bottom entry of the diagonal | 
|  | if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1))) | 
|  | return normt * eival1; | 
|  | else | 
|  | return normt * eival2; | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> | 
|  | template<typename InputType> | 
|  | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) | 
|  | { | 
|  | m_matUisUptodate = false; | 
|  | eigen_assert(matrix.cols() == matrix.rows()); | 
|  |  | 
|  | if(matrix.cols() == 1) | 
|  | { | 
|  | m_matT = matrix.derived().template cast<ComplexScalar>(); | 
|  | if(computeU)  m_matU = ComplexMatrixType::Identity(1,1); | 
|  | m_info = Success; | 
|  | m_isInitialized = true; | 
|  | m_matUisUptodate = computeU; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU); | 
|  | computeFromHessenberg(m_matT, m_matU, computeU); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | template<typename HessMatrixType, typename OrthMatrixType> | 
|  | ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) | 
|  | { | 
|  | m_matT = matrixH; | 
|  | if(computeU) | 
|  | m_matU = matrixQ; | 
|  | reduceToTriangularForm(computeU); | 
|  | return *this; | 
|  | } | 
|  | namespace internal { | 
|  |  | 
|  | /* Reduce given matrix to Hessenberg form */ | 
|  | template<typename MatrixType, bool IsComplex> | 
|  | struct complex_schur_reduce_to_hessenberg | 
|  | { | 
|  | // this is the implementation for the case IsComplex = true | 
|  | static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) | 
|  | { | 
|  | _this.m_hess.compute(matrix); | 
|  | _this.m_matT = _this.m_hess.matrixH(); | 
|  | if(computeU)  _this.m_matU = _this.m_hess.matrixQ(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | struct complex_schur_reduce_to_hessenberg<MatrixType, false> | 
|  | { | 
|  | static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) | 
|  | { | 
|  | typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; | 
|  |  | 
|  | // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar | 
|  | _this.m_hess.compute(matrix); | 
|  | _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>(); | 
|  | if(computeU) | 
|  | { | 
|  | // This may cause an allocation which seems to be avoidable | 
|  | MatrixType Q = _this.m_hess.matrixQ(); | 
|  | _this.m_matU = Q.template cast<ComplexScalar>(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. | 
|  | template<typename MatrixType> | 
|  | void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU) | 
|  | { | 
|  | Index maxIters = m_maxIters; | 
|  | if (maxIters == -1) | 
|  | maxIters = m_maxIterationsPerRow * m_matT.rows(); | 
|  |  | 
|  | // The matrix m_matT is divided in three parts. | 
|  | // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. | 
|  | // Rows il,...,iu is the part we are working on (the active submatrix). | 
|  | // Rows iu+1,...,end are already brought in triangular form. | 
|  | Index iu = m_matT.cols() - 1; | 
|  | Index il; | 
|  | Index iter = 0; // number of iterations we are working on the (iu,iu) element | 
|  | Index totalIter = 0; // number of iterations for whole matrix | 
|  |  | 
|  | while(true) | 
|  | { | 
|  | // find iu, the bottom row of the active submatrix | 
|  | while(iu > 0) | 
|  | { | 
|  | if(!subdiagonalEntryIsNeglegible(iu-1)) break; | 
|  | iter = 0; | 
|  | --iu; | 
|  | } | 
|  |  | 
|  | // if iu is zero then we are done; the whole matrix is triangularized | 
|  | if(iu==0) break; | 
|  |  | 
|  | // if we spent too many iterations, we give up | 
|  | iter++; | 
|  | totalIter++; | 
|  | if(totalIter > maxIters) break; | 
|  |  | 
|  | // find il, the top row of the active submatrix | 
|  | il = iu-1; | 
|  | while(il > 0 && !subdiagonalEntryIsNeglegible(il-1)) | 
|  | { | 
|  | --il; | 
|  | } | 
|  |  | 
|  | /* perform the QR step using Givens rotations. The first rotation | 
|  | creates a bulge; the (il+2,il) element becomes nonzero. This | 
|  | bulge is chased down to the bottom of the active submatrix. */ | 
|  |  | 
|  | ComplexScalar shift = computeShift(iu, iter); | 
|  | JacobiRotation<ComplexScalar> rot; | 
|  | rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il)); | 
|  | m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); | 
|  | m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot); | 
|  | if(computeU) m_matU.applyOnTheRight(il, il+1, rot); | 
|  |  | 
|  | for(Index i=il+1 ; i<iu ; i++) | 
|  | { | 
|  | rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1)); | 
|  | m_matT.coeffRef(i+1,i-1) = ComplexScalar(0); | 
|  | m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint()); | 
|  | m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot); | 
|  | if(computeU) m_matU.applyOnTheRight(i, i+1, rot); | 
|  | } | 
|  | } | 
|  |  | 
|  | if(totalIter <= maxIters) | 
|  | m_info = Success; | 
|  | else | 
|  | m_info = NoConvergence; | 
|  |  | 
|  | m_isInitialized = true; | 
|  | m_matUisUptodate = computeU; | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_COMPLEX_SCHUR_H |