| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | 
 | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_SUITESPARSEQRSUPPORT_H | 
 | #define EIGEN_SUITESPARSEQRSUPPORT_H | 
 |  | 
 | namespace Eigen { | 
 |    | 
 |   template<typename MatrixType> class SPQR;  | 
 |   template<typename SPQRType> struct SPQRMatrixQReturnType;  | 
 |   template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;  | 
 |   template <typename SPQRType, typename Derived> struct SPQR_QProduct; | 
 |   namespace internal { | 
 |     template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> > | 
 |     { | 
 |       typedef typename SPQRType::MatrixType ReturnType; | 
 |     }; | 
 |     template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> > | 
 |     { | 
 |       typedef typename SPQRType::MatrixType ReturnType; | 
 |     }; | 
 |     template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> > | 
 |     { | 
 |       typedef typename Derived::PlainObject ReturnType; | 
 |     }; | 
 |   } // End namespace internal | 
 |    | 
 | /** | 
 |   * \ingroup SPQRSupport_Module | 
 |   * \class SPQR | 
 |   * \brief Sparse QR factorization based on SuiteSparseQR library | 
 |   * | 
 |   * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition | 
 |   * of sparse matrices. The result is then used to solve linear leasts_square systems. | 
 |   * Clearly, a QR factorization is returned such that A*P = Q*R where : | 
 |   * | 
 |   * P is the column permutation. Use colsPermutation() to get it. | 
 |   * | 
 |   * Q is the orthogonal matrix represented as Householder reflectors. | 
 |   * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. | 
 |   * You can then apply it to a vector. | 
 |   * | 
 |   * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. | 
 |   * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index | 
 |   * | 
 |   * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<> | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * | 
 |   */ | 
 | template<typename _MatrixType> | 
 | class SPQR : public SparseSolverBase<SPQR<_MatrixType> > | 
 | { | 
 |   protected: | 
 |     typedef SparseSolverBase<SPQR<_MatrixType> > Base; | 
 |     using Base::m_isInitialized; | 
 |   public: | 
 |     typedef typename _MatrixType::Scalar Scalar; | 
 |     typedef typename _MatrixType::RealScalar RealScalar; | 
 |     typedef SuiteSparse_long StorageIndex ; | 
 |     typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType; | 
 |     typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType; | 
 |     enum { | 
 |       ColsAtCompileTime = Dynamic, | 
 |       MaxColsAtCompileTime = Dynamic | 
 |     }; | 
 |   public: | 
 |     SPQR()  | 
 |       : m_analysisIsOk(false), | 
 |         m_factorizationIsOk(false), | 
 |         m_isRUpToDate(false), | 
 |         m_ordering(SPQR_ORDERING_DEFAULT), | 
 |         m_allow_tol(SPQR_DEFAULT_TOL), | 
 |         m_tolerance (NumTraits<Scalar>::epsilon()), | 
 |         m_cR(0), | 
 |         m_E(0), | 
 |         m_H(0), | 
 |         m_HPinv(0), | 
 |         m_HTau(0), | 
 |         m_useDefaultThreshold(true) | 
 |     {  | 
 |       cholmod_l_start(&m_cc); | 
 |     } | 
 |      | 
 |     explicit SPQR(const _MatrixType& matrix) | 
 |       : m_analysisIsOk(false), | 
 |         m_factorizationIsOk(false), | 
 |         m_isRUpToDate(false), | 
 |         m_ordering(SPQR_ORDERING_DEFAULT), | 
 |         m_allow_tol(SPQR_DEFAULT_TOL), | 
 |         m_tolerance (NumTraits<Scalar>::epsilon()), | 
 |         m_cR(0), | 
 |         m_E(0), | 
 |         m_H(0), | 
 |         m_HPinv(0), | 
 |         m_HTau(0), | 
 |         m_useDefaultThreshold(true) | 
 |     { | 
 |       cholmod_l_start(&m_cc); | 
 |       compute(matrix); | 
 |     } | 
 |      | 
 |     ~SPQR() | 
 |     { | 
 |       SPQR_free(); | 
 |       cholmod_l_finish(&m_cc); | 
 |     } | 
 |     void SPQR_free() | 
 |     { | 
 |       cholmod_l_free_sparse(&m_H, &m_cc); | 
 |       cholmod_l_free_sparse(&m_cR, &m_cc); | 
 |       cholmod_l_free_dense(&m_HTau, &m_cc); | 
 |       std::free(m_E); | 
 |       std::free(m_HPinv); | 
 |     } | 
 |  | 
 |     void compute(const _MatrixType& matrix) | 
 |     { | 
 |       if(m_isInitialized) SPQR_free(); | 
 |  | 
 |       MatrixType mat(matrix); | 
 |        | 
 |       /* Compute the default threshold as in MatLab, see: | 
 |        * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing | 
 |        * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3  | 
 |        */ | 
 |       RealScalar pivotThreshold = m_tolerance; | 
 |       if(m_useDefaultThreshold)  | 
 |       { | 
 |         RealScalar max2Norm = 0.0; | 
 |         for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm()); | 
 |         if(max2Norm==RealScalar(0)) | 
 |           max2Norm = RealScalar(1); | 
 |         pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon(); | 
 |       } | 
 |       cholmod_sparse A;  | 
 |       A = viewAsCholmod(mat); | 
 |       m_rows = matrix.rows(); | 
 |       Index col = matrix.cols(); | 
 |       m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,  | 
 |                              &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc); | 
 |  | 
 |       if (!m_cR) | 
 |       { | 
 |         m_info = NumericalIssue; | 
 |         m_isInitialized = false; | 
 |         return; | 
 |       } | 
 |       m_info = Success; | 
 |       m_isInitialized = true; | 
 |       m_isRUpToDate = false; | 
 |     } | 
 |     /**  | 
 |      * Get the number of rows of the input matrix and the Q matrix | 
 |      */ | 
 |     inline Index rows() const {return m_rows; } | 
 |      | 
 |     /**  | 
 |      * Get the number of columns of the input matrix.  | 
 |      */ | 
 |     inline Index cols() const { return m_cR->ncol; } | 
 |      | 
 |     template<typename Rhs, typename Dest> | 
 |     void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const | 
 |     { | 
 |       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); | 
 |       eigen_assert(b.cols()==1 && "This method is for vectors only"); | 
 |  | 
 |       //Compute Q^T * b | 
 |       typename Dest::PlainObject y, y2; | 
 |       y = matrixQ().transpose() * b; | 
 |        | 
 |       // Solves with the triangular matrix R | 
 |       Index rk = this->rank(); | 
 |       y2 = y; | 
 |       y.resize((std::max)(cols(),Index(y.rows())),y.cols()); | 
 |       y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk)); | 
 |  | 
 |       // Apply the column permutation  | 
 |       // colsPermutation() performs a copy of the permutation, | 
 |       // so let's apply it manually: | 
 |       for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i); | 
 |       for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero(); | 
 |        | 
 | //       y.bottomRows(y.rows()-rk).setZero(); | 
 | //       dest = colsPermutation() * y.topRows(cols()); | 
 |        | 
 |       m_info = Success; | 
 |     } | 
 |      | 
 |     /** \returns the sparse triangular factor R. It is a sparse matrix | 
 |      */ | 
 |     const MatrixType matrixR() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); | 
 |       if(!m_isRUpToDate) { | 
 |         m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR); | 
 |         m_isRUpToDate = true; | 
 |       } | 
 |       return m_R; | 
 |     } | 
 |     /// Get an expression of the matrix Q | 
 |     SPQRMatrixQReturnType<SPQR> matrixQ() const | 
 |     { | 
 |       return SPQRMatrixQReturnType<SPQR>(*this); | 
 |     } | 
 |     /// Get the permutation that was applied to columns of A | 
 |     PermutationType colsPermutation() const | 
 |     {  | 
 |       eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |       return PermutationType(m_E, m_cR->ncol); | 
 |     } | 
 |     /** | 
 |      * Gets the rank of the matrix.  | 
 |      * It should be equal to matrixQR().cols if the matrix is full-rank | 
 |      */ | 
 |     Index rank() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |       return m_cc.SPQR_istat[4]; | 
 |     } | 
 |     /// Set the fill-reducing ordering method to be used | 
 |     void setSPQROrdering(int ord) { m_ordering = ord;} | 
 |     /// Set the tolerance tol to treat columns with 2-norm < =tol as zero | 
 |     void setPivotThreshold(const RealScalar& tol) | 
 |     { | 
 |       m_useDefaultThreshold = false; | 
 |       m_tolerance = tol; | 
 |     } | 
 |      | 
 |     /** \returns a pointer to the SPQR workspace */ | 
 |     cholmod_common *cholmodCommon() const { return &m_cc; } | 
 |      | 
 |      | 
 |     /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was successful, | 
 |       *          \c NumericalIssue if the sparse QR can not be computed | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |       return m_info; | 
 |     } | 
 |   protected: | 
 |     bool m_analysisIsOk; | 
 |     bool m_factorizationIsOk; | 
 |     mutable bool m_isRUpToDate; | 
 |     mutable ComputationInfo m_info; | 
 |     int m_ordering; // Ordering method to use, see SPQR's manual | 
 |     int m_allow_tol; // Allow to use some tolerance during numerical factorization. | 
 |     RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero | 
 |     mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format | 
 |     mutable MatrixType m_R; // The sparse matrix R in Eigen format | 
 |     mutable StorageIndex *m_E; // The permutation applied to columns | 
 |     mutable cholmod_sparse *m_H;  //The householder vectors | 
 |     mutable StorageIndex *m_HPinv; // The row permutation of H | 
 |     mutable cholmod_dense *m_HTau; // The Householder coefficients | 
 |     mutable Index m_rank; // The rank of the matrix | 
 |     mutable cholmod_common m_cc; // Workspace and parameters | 
 |     bool m_useDefaultThreshold;     // Use default threshold | 
 |     Index m_rows; | 
 |     template<typename ,typename > friend struct SPQR_QProduct; | 
 | }; | 
 |  | 
 | template <typename SPQRType, typename Derived> | 
 | struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> > | 
 | { | 
 |   typedef typename SPQRType::Scalar Scalar; | 
 |   typedef typename SPQRType::StorageIndex StorageIndex; | 
 |   //Define the constructor to get reference to argument types | 
 |   SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {} | 
 |    | 
 |   inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); } | 
 |   inline Index cols() const { return m_other.cols(); } | 
 |   // Assign to a vector | 
 |   template<typename ResType> | 
 |   void evalTo(ResType& res) const | 
 |   { | 
 |     cholmod_dense y_cd; | 
 |     cholmod_dense *x_cd;  | 
 |     int method = m_transpose ? SPQR_QTX : SPQR_QX;  | 
 |     cholmod_common *cc = m_spqr.cholmodCommon(); | 
 |     y_cd = viewAsCholmod(m_other.const_cast_derived()); | 
 |     x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc); | 
 |     res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol); | 
 |     cholmod_l_free_dense(&x_cd, cc); | 
 |   } | 
 |   const SPQRType& m_spqr;  | 
 |   const Derived& m_other;  | 
 |   bool m_transpose;  | 
 |    | 
 | }; | 
 | template<typename SPQRType> | 
 | struct SPQRMatrixQReturnType{ | 
 |    | 
 |   SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {} | 
 |   template<typename Derived> | 
 |   SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other) | 
 |   { | 
 |     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false); | 
 |   } | 
 |   SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const | 
 |   { | 
 |     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); | 
 |   } | 
 |   // To use for operations with the transpose of Q | 
 |   SPQRMatrixQTransposeReturnType<SPQRType> transpose() const | 
 |   { | 
 |     return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); | 
 |   } | 
 |   const SPQRType& m_spqr; | 
 | }; | 
 |  | 
 | template<typename SPQRType> | 
 | struct SPQRMatrixQTransposeReturnType{ | 
 |   SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {} | 
 |   template<typename Derived> | 
 |   SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other) | 
 |   { | 
 |     return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true); | 
 |   } | 
 |   const SPQRType& m_spqr; | 
 | }; | 
 |  | 
 | }// End namespace Eigen | 
 | #endif |