| *> \brief \b ZLARFT | 
 | * | 
 | *  =========== DOCUMENTATION =========== | 
 | * | 
 | * Online html documentation available at  | 
 | *            http://www.netlib.org/lapack/explore-html/  | 
 | * | 
 | *> \htmlonly | 
 | *> Download ZLARFT + dependencies  | 
 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarft.f">  | 
 | *> [TGZ]</a>  | 
 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarft.f">  | 
 | *> [ZIP]</a>  | 
 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarft.f">  | 
 | *> [TXT]</a> | 
 | *> \endhtmlonly  | 
 | * | 
 | *  Definition: | 
 | *  =========== | 
 | * | 
 | *       SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | 
 | *  | 
 | *       .. Scalar Arguments .. | 
 | *       CHARACTER          DIRECT, STOREV | 
 | *       INTEGER            K, LDT, LDV, N | 
 | *       .. | 
 | *       .. Array Arguments .. | 
 | *       COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * ) | 
 | *       .. | 
 | *   | 
 | * | 
 | *> \par Purpose: | 
 | *  ============= | 
 | *> | 
 | *> \verbatim | 
 | *> | 
 | *> ZLARFT forms the triangular factor T of a complex block reflector H | 
 | *> of order n, which is defined as a product of k elementary reflectors. | 
 | *> | 
 | *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; | 
 | *> | 
 | *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. | 
 | *> | 
 | *> If STOREV = 'C', the vector which defines the elementary reflector | 
 | *> H(i) is stored in the i-th column of the array V, and | 
 | *> | 
 | *>    H  =  I - V * T * V**H | 
 | *> | 
 | *> If STOREV = 'R', the vector which defines the elementary reflector | 
 | *> H(i) is stored in the i-th row of the array V, and | 
 | *> | 
 | *>    H  =  I - V**H * T * V | 
 | *> \endverbatim | 
 | * | 
 | *  Arguments: | 
 | *  ========== | 
 | * | 
 | *> \param[in] DIRECT | 
 | *> \verbatim | 
 | *>          DIRECT is CHARACTER*1 | 
 | *>          Specifies the order in which the elementary reflectors are | 
 | *>          multiplied to form the block reflector: | 
 | *>          = 'F': H = H(1) H(2) . . . H(k) (Forward) | 
 | *>          = 'B': H = H(k) . . . H(2) H(1) (Backward) | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[in] STOREV | 
 | *> \verbatim | 
 | *>          STOREV is CHARACTER*1 | 
 | *>          Specifies how the vectors which define the elementary | 
 | *>          reflectors are stored (see also Further Details): | 
 | *>          = 'C': columnwise | 
 | *>          = 'R': rowwise | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[in] N | 
 | *> \verbatim | 
 | *>          N is INTEGER | 
 | *>          The order of the block reflector H. N >= 0. | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[in] K | 
 | *> \verbatim | 
 | *>          K is INTEGER | 
 | *>          The order of the triangular factor T (= the number of | 
 | *>          elementary reflectors). K >= 1. | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[in] V | 
 | *> \verbatim | 
 | *>          V is COMPLEX*16 array, dimension | 
 | *>                               (LDV,K) if STOREV = 'C' | 
 | *>                               (LDV,N) if STOREV = 'R' | 
 | *>          The matrix V. See further details. | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[in] LDV | 
 | *> \verbatim | 
 | *>          LDV is INTEGER | 
 | *>          The leading dimension of the array V. | 
 | *>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[in] TAU | 
 | *> \verbatim | 
 | *>          TAU is COMPLEX*16 array, dimension (K) | 
 | *>          TAU(i) must contain the scalar factor of the elementary | 
 | *>          reflector H(i). | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[out] T | 
 | *> \verbatim | 
 | *>          T is COMPLEX*16 array, dimension (LDT,K) | 
 | *>          The k by k triangular factor T of the block reflector. | 
 | *>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is | 
 | *>          lower triangular. The rest of the array is not used. | 
 | *> \endverbatim | 
 | *> | 
 | *> \param[in] LDT | 
 | *> \verbatim | 
 | *>          LDT is INTEGER | 
 | *>          The leading dimension of the array T. LDT >= K. | 
 | *> \endverbatim | 
 | * | 
 | *  Authors: | 
 | *  ======== | 
 | * | 
 | *> \author Univ. of Tennessee  | 
 | *> \author Univ. of California Berkeley  | 
 | *> \author Univ. of Colorado Denver  | 
 | *> \author NAG Ltd.  | 
 | * | 
 | *> \date April 2012 | 
 | * | 
 | *> \ingroup complex16OTHERauxiliary | 
 | * | 
 | *> \par Further Details: | 
 | *  ===================== | 
 | *> | 
 | *> \verbatim | 
 | *> | 
 | *>  The shape of the matrix V and the storage of the vectors which define | 
 | *>  the H(i) is best illustrated by the following example with n = 5 and | 
 | *>  k = 3. The elements equal to 1 are not stored. | 
 | *> | 
 | *>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': | 
 | *> | 
 | *>               V = (  1       )                 V = (  1 v1 v1 v1 v1 ) | 
 | *>                   ( v1  1    )                     (     1 v2 v2 v2 ) | 
 | *>                   ( v1 v2  1 )                     (        1 v3 v3 ) | 
 | *>                   ( v1 v2 v3 ) | 
 | *>                   ( v1 v2 v3 ) | 
 | *> | 
 | *>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': | 
 | *> | 
 | *>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       ) | 
 | *>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    ) | 
 | *>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 ) | 
 | *>                   (     1 v3 ) | 
 | *>                   (        1 ) | 
 | *> \endverbatim | 
 | *> | 
 | *  ===================================================================== | 
 |       SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | 
 | * | 
 | *  -- LAPACK auxiliary routine (version 3.4.1) -- | 
 | *  -- LAPACK is a software package provided by Univ. of Tennessee,    -- | 
 | *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | 
 | *     April 2012 | 
 | * | 
 | *     .. Scalar Arguments .. | 
 |       CHARACTER          DIRECT, STOREV | 
 |       INTEGER            K, LDT, LDV, N | 
 | *     .. | 
 | *     .. Array Arguments .. | 
 |       COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * ) | 
 | *     .. | 
 | * | 
 | *  ===================================================================== | 
 | * | 
 | *     .. Parameters .. | 
 |       COMPLEX*16         ONE, ZERO | 
 |       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ), | 
 |      $                   ZERO = ( 0.0D+0, 0.0D+0 ) ) | 
 | *     .. | 
 | *     .. Local Scalars .. | 
 |       INTEGER            I, J, PREVLASTV, LASTV | 
 | *     .. | 
 | *     .. External Subroutines .. | 
 |       EXTERNAL           ZGEMV, ZLACGV, ZTRMV | 
 | *     .. | 
 | *     .. External Functions .. | 
 |       LOGICAL            LSAME | 
 |       EXTERNAL           LSAME | 
 | *     .. | 
 | *     .. Executable Statements .. | 
 | * | 
 | *     Quick return if possible | 
 | * | 
 |       IF( N.EQ.0 ) | 
 |      $   RETURN | 
 | * | 
 |       IF( LSAME( DIRECT, 'F' ) ) THEN | 
 |          PREVLASTV = N | 
 |          DO I = 1, K | 
 |             PREVLASTV = MAX( PREVLASTV, I ) | 
 |             IF( TAU( I ).EQ.ZERO ) THEN | 
 | * | 
 | *              H(i)  =  I | 
 | * | 
 |                DO J = 1, I | 
 |                   T( J, I ) = ZERO | 
 |                END DO | 
 |             ELSE | 
 | * | 
 | *              general case | 
 | * | 
 |                IF( LSAME( STOREV, 'C' ) ) THEN | 
 | *                 Skip any trailing zeros. | 
 |                   DO LASTV = N, I+1, -1 | 
 |                      IF( V( LASTV, I ).NE.ZERO ) EXIT | 
 |                   END DO | 
 |                   DO J = 1, I-1 | 
 |                      T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) | 
 |                   END DO                      | 
 |                   J = MIN( LASTV, PREVLASTV ) | 
 | * | 
 | *                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) | 
 | * | 
 |                   CALL ZGEMV( 'Conjugate transpose', J-I, I-1, | 
 |      $                        -TAU( I ), V( I+1, 1 ), LDV,  | 
 |      $                        V( I+1, I ), 1, ONE, T( 1, I ), 1 ) | 
 |                ELSE | 
 | *                 Skip any trailing zeros. | 
 |                   DO LASTV = N, I+1, -1 | 
 |                      IF( V( I, LASTV ).NE.ZERO ) EXIT | 
 |                   END DO | 
 |                   DO J = 1, I-1 | 
 |                      T( J, I ) = -TAU( I ) * V( J , I ) | 
 |                   END DO                      | 
 |                   J = MIN( LASTV, PREVLASTV ) | 
 | * | 
 | *                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H | 
 | * | 
 |                   CALL ZGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ), | 
 |      $                        V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | 
 |      $                        ONE, T( 1, I ), LDT )                   | 
 |                END IF | 
 | * | 
 | *              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | 
 | * | 
 |                CALL ZTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, | 
 |      $                     LDT, T( 1, I ), 1 ) | 
 |                T( I, I ) = TAU( I ) | 
 |                IF( I.GT.1 ) THEN | 
 |                   PREVLASTV = MAX( PREVLASTV, LASTV ) | 
 |                ELSE | 
 |                   PREVLASTV = LASTV | 
 |                END IF | 
 |              END IF | 
 |          END DO | 
 |       ELSE | 
 |          PREVLASTV = 1 | 
 |          DO I = K, 1, -1 | 
 |             IF( TAU( I ).EQ.ZERO ) THEN | 
 | * | 
 | *              H(i)  =  I | 
 | * | 
 |                DO J = I, K | 
 |                   T( J, I ) = ZERO | 
 |                END DO | 
 |             ELSE | 
 | * | 
 | *              general case | 
 | * | 
 |                IF( I.LT.K ) THEN | 
 |                   IF( LSAME( STOREV, 'C' ) ) THEN | 
 | *                    Skip any leading zeros. | 
 |                      DO LASTV = 1, I-1 | 
 |                         IF( V( LASTV, I ).NE.ZERO ) EXIT | 
 |                      END DO | 
 |                      DO J = I+1, K | 
 |                         T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) ) | 
 |                      END DO                         | 
 |                      J = MAX( LASTV, PREVLASTV ) | 
 | * | 
 | *                    T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) | 
 | * | 
 |                      CALL ZGEMV( 'Conjugate transpose', N-K+I-J, K-I, | 
 |      $                           -TAU( I ), V( J, I+1 ), LDV, V( J, I ), | 
 |      $                           1, ONE, T( I+1, I ), 1 ) | 
 |                   ELSE | 
 | *                    Skip any leading zeros. | 
 |                      DO LASTV = 1, I-1 | 
 |                         IF( V( I, LASTV ).NE.ZERO ) EXIT | 
 |                      END DO | 
 |                      DO J = I+1, K | 
 |                         T( J, I ) = -TAU( I ) * V( J, N-K+I ) | 
 |                      END DO                                            | 
 |                      J = MAX( LASTV, PREVLASTV ) | 
 | * | 
 | *                    T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H | 
 | * | 
 |                      CALL ZGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ), | 
 |      $                           V( I+1, J ), LDV, V( I, J ), LDV, | 
 |      $                           ONE, T( I+1, I ), LDT )                      | 
 |                   END IF | 
 | * | 
 | *                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | 
 | * | 
 |                   CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, | 
 |      $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | 
 |                   IF( I.GT.1 ) THEN | 
 |                      PREVLASTV = MIN( PREVLASTV, LASTV ) | 
 |                   ELSE | 
 |                      PREVLASTV = LASTV | 
 |                   END IF | 
 |                END IF | 
 |                T( I, I ) = TAU( I ) | 
 |             END IF | 
 |          END DO | 
 |       END IF | 
 |       RETURN | 
 | * | 
 | *     End of ZLARFT | 
 | * | 
 |       END |