|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/QR> | 
|  |  | 
|  | template<typename MatrixType> void householder(const MatrixType& m) | 
|  | { | 
|  | static bool even = true; | 
|  | even = !even; | 
|  | /* this test covers the following files: | 
|  | Householder.h | 
|  | */ | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  | typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
|  | typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType; | 
|  | typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType; | 
|  |  | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType; | 
|  |  | 
|  | Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp((std::max)(rows,cols)); | 
|  | Scalar* tmp = &_tmp.coeffRef(0,0); | 
|  |  | 
|  | Scalar beta; | 
|  | RealScalar alpha; | 
|  | EssentialVectorType essential; | 
|  |  | 
|  | VectorType v1 = VectorType::Random(rows), v2; | 
|  | v2 = v1; | 
|  | v1.makeHouseholder(essential, beta, alpha); | 
|  | v1.applyHouseholderOnTheLeft(essential,beta,tmp); | 
|  | VERIFY_IS_APPROX(v1.norm(), v2.norm()); | 
|  | if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm()); | 
|  | v1 = VectorType::Random(rows); | 
|  | v2 = v1; | 
|  | v1.applyHouseholderOnTheLeft(essential,beta,tmp); | 
|  | VERIFY_IS_APPROX(v1.norm(), v2.norm()); | 
|  |  | 
|  | // reconstruct householder matrix: | 
|  | SquareMatrixType id, H1, H2; | 
|  | id.setIdentity(rows, rows); | 
|  | H1 = H2 = id; | 
|  | VectorType vv(rows); | 
|  | vv << Scalar(1), essential; | 
|  | H1.applyHouseholderOnTheLeft(essential, beta, tmp); | 
|  | H2.applyHouseholderOnTheRight(essential, beta, tmp); | 
|  | VERIFY_IS_APPROX(H1, H2); | 
|  | VERIFY_IS_APPROX(H1, id - beta * vv*vv.adjoint()); | 
|  |  | 
|  | MatrixType m1(rows, cols), | 
|  | m2(rows, cols); | 
|  |  | 
|  | v1 = VectorType::Random(rows); | 
|  | if(even) v1.tail(rows-1).setZero(); | 
|  | m1.colwise() = v1; | 
|  | m2 = m1; | 
|  | m1.col(0).makeHouseholder(essential, beta, alpha); | 
|  | m1.applyHouseholderOnTheLeft(essential,beta,tmp); | 
|  | VERIFY_IS_APPROX(m1.norm(), m2.norm()); | 
|  | if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm()); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0,0)), numext::real(m1(0,0))); | 
|  | VERIFY_IS_APPROX(numext::real(m1(0,0)), alpha); | 
|  |  | 
|  | v1 = VectorType::Random(rows); | 
|  | if(even) v1.tail(rows-1).setZero(); | 
|  | SquareMatrixType m3(rows,rows), m4(rows,rows); | 
|  | m3.rowwise() = v1.transpose(); | 
|  | m4 = m3; | 
|  | m3.row(0).makeHouseholder(essential, beta, alpha); | 
|  | m3.applyHouseholderOnTheRight(essential.conjugate(),beta,tmp); | 
|  | VERIFY_IS_APPROX(m3.norm(), m4.norm()); | 
|  | if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm()); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0,0)), numext::real(m3(0,0))); | 
|  | VERIFY_IS_APPROX(numext::real(m3(0,0)), alpha); | 
|  |  | 
|  | // test householder sequence on the left with a shift | 
|  |  | 
|  | Index shift = internal::random<Index>(0, std::max<Index>(rows-2,0)); | 
|  | Index brows = rows - shift; | 
|  | m1.setRandom(rows, cols); | 
|  | HBlockMatrixType hbm = m1.block(shift,0,brows,cols); | 
|  | HouseholderQR<HBlockMatrixType> qr(hbm); | 
|  | m2 = m1; | 
|  | m2.block(shift,0,brows,cols) = qr.matrixQR(); | 
|  | HCoeffsVectorType hc = qr.hCoeffs().conjugate(); | 
|  | HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc); | 
|  | hseq.setLength(hc.size()).setShift(shift); | 
|  | VERIFY(hseq.length() == hc.size()); | 
|  | VERIFY(hseq.shift() == shift); | 
|  |  | 
|  | MatrixType m5 = m2; | 
|  | m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero(); | 
|  | VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly | 
|  | m3 = hseq; | 
|  | VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying | 
|  |  | 
|  | SquareMatrixType hseq_mat = hseq; | 
|  | SquareMatrixType hseq_mat_conj = hseq.conjugate(); | 
|  | SquareMatrixType hseq_mat_adj = hseq.adjoint(); | 
|  | SquareMatrixType hseq_mat_trans = hseq.transpose(); | 
|  | SquareMatrixType m6 = SquareMatrixType::Random(rows, rows); | 
|  | VERIFY_IS_APPROX(hseq_mat.adjoint(),    hseq_mat_adj); | 
|  | VERIFY_IS_APPROX(hseq_mat.conjugate(),  hseq_mat_conj); | 
|  | VERIFY_IS_APPROX(hseq_mat.transpose(),  hseq_mat_trans); | 
|  | VERIFY_IS_APPROX(hseq * m6,             hseq_mat * m6); | 
|  | VERIFY_IS_APPROX(hseq.adjoint() * m6,   hseq_mat_adj * m6); | 
|  | VERIFY_IS_APPROX(hseq.conjugate() * m6, hseq_mat_conj * m6); | 
|  | VERIFY_IS_APPROX(hseq.transpose() * m6, hseq_mat_trans * m6); | 
|  | VERIFY_IS_APPROX(m6 * hseq,             m6 * hseq_mat); | 
|  | VERIFY_IS_APPROX(m6 * hseq.adjoint(),   m6 * hseq_mat_adj); | 
|  | VERIFY_IS_APPROX(m6 * hseq.conjugate(), m6 * hseq_mat_conj); | 
|  | VERIFY_IS_APPROX(m6 * hseq.transpose(), m6 * hseq_mat_trans); | 
|  |  | 
|  | // test householder sequence on the right with a shift | 
|  |  | 
|  | TMatrixType tm2 = m2.transpose(); | 
|  | HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc); | 
|  | rhseq.setLength(hc.size()).setShift(shift); | 
|  | VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly | 
|  | m3 = rhseq; | 
|  | VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(householder) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( householder(Matrix<double,2,2>()) ); | 
|  | CALL_SUBTEST_2( householder(Matrix<float,2,3>()) ); | 
|  | CALL_SUBTEST_3( householder(Matrix<double,3,5>()) ); | 
|  | CALL_SUBTEST_4( householder(Matrix<float,4,4>()) ); | 
|  | CALL_SUBTEST_5( householder(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_6( householder(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_7( householder(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
|  | CALL_SUBTEST_8( householder(Matrix<double,1,1>()) ); | 
|  | } | 
|  | } |