|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template<typename MatrixType> | 
|  | bool equalsIdentity(const MatrixType& A) | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | Scalar zero = static_cast<Scalar>(0); | 
|  |  | 
|  | bool offDiagOK = true; | 
|  | for (Index i = 0; i < A.rows(); ++i) { | 
|  | for (Index j = i+1; j < A.cols(); ++j) { | 
|  | offDiagOK = offDiagOK && (A(i,j) == zero); | 
|  | } | 
|  | } | 
|  | for (Index i = 0; i < A.rows(); ++i) { | 
|  | for (Index j = 0; j < (std::min)(i, A.cols()); ++j) { | 
|  | offDiagOK = offDiagOK && (A(i,j) == zero); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool diagOK = (A.diagonal().array() == 1).all(); | 
|  | return offDiagOK && diagOK; | 
|  |  | 
|  | } | 
|  |  | 
|  | template<typename VectorType> | 
|  | void check_extremity_accuracy(const VectorType &v, const typename VectorType::Scalar &low, const typename VectorType::Scalar &high) | 
|  | { | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  | typedef typename VectorType::RealScalar RealScalar; | 
|  |  | 
|  | RealScalar prec = internal::is_same<RealScalar,float>::value ? NumTraits<RealScalar>::dummy_precision()*10 : NumTraits<RealScalar>::dummy_precision()/10; | 
|  | Index size = v.size(); | 
|  |  | 
|  | if(size<20) | 
|  | return; | 
|  |  | 
|  | for (int i=0; i<size; ++i) | 
|  | { | 
|  | if(i<5 || i>size-6) | 
|  | { | 
|  | Scalar ref = (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1); | 
|  | if(std::abs(ref)>1) | 
|  | { | 
|  | if(!internal::isApprox(v(i), ref, prec)) | 
|  | std::cout << v(i) << " != " << ref << "  ; relative error: " << std::abs((v(i)-ref)/ref) << "  ; required precision: " << prec << "  ; range: " << low << "," << high << "  ; i: " << i << "\n"; | 
|  | VERIFY(internal::isApprox(v(i), (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1), prec)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename VectorType> | 
|  | void testVectorType(const VectorType& base) | 
|  | { | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  | typedef typename VectorType::RealScalar RealScalar; | 
|  |  | 
|  | const Index size = base.size(); | 
|  |  | 
|  | Scalar high = internal::random<Scalar>(-500,500); | 
|  | Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500)); | 
|  | if (numext::real(low)>numext::real(high)) std::swap(low,high); | 
|  |  | 
|  | // check low==high | 
|  | if(internal::random<float>(0.f,1.f)<0.05f) | 
|  | low = high; | 
|  | // check abs(low) >> abs(high) | 
|  | else if(size>2 && std::numeric_limits<RealScalar>::max_exponent10>0 && internal::random<float>(0.f,1.f)<0.1f) | 
|  | low = -internal::random<Scalar>(1,2) * RealScalar(std::pow(RealScalar(10),std::numeric_limits<RealScalar>::max_exponent10/2)); | 
|  |  | 
|  | const Scalar step = ((size == 1) ? 1 : (high-low)/RealScalar(size-1)); | 
|  |  | 
|  | // check whether the result yields what we expect it to do | 
|  | VectorType m(base); | 
|  | m.setLinSpaced(size,low,high); | 
|  |  | 
|  | if(!NumTraits<Scalar>::IsInteger) | 
|  | { | 
|  | VectorType n(size); | 
|  | for (int i=0; i<size; ++i) | 
|  | n(i) = low+RealScalar(i)*step; | 
|  | VERIFY_IS_APPROX(m,n); | 
|  |  | 
|  | CALL_SUBTEST( check_extremity_accuracy(m, low, high) ); | 
|  | } | 
|  |  | 
|  | RealScalar range_length = numext::real(high-low); | 
|  | if((!NumTraits<Scalar>::IsInteger) || (range_length>=size && (Index(range_length)%(size-1))==0) || (Index(range_length+1)<size && (size%Index(range_length+1))==0)) | 
|  | { | 
|  | VectorType n(size); | 
|  | if((!NumTraits<Scalar>::IsInteger) || (range_length>=size)) | 
|  | for (int i=0; i<size; ++i) | 
|  | n(i) = size==1 ? low : (low + ((high-low)*Scalar(i))/RealScalar(size-1)); | 
|  | else | 
|  | for (int i=0; i<size; ++i) | 
|  | n(i) = size==1 ? low : low + Scalar((double(range_length+1)*double(i))/double(size)); | 
|  | VERIFY_IS_APPROX(m,n); | 
|  |  | 
|  | // random access version | 
|  | m = VectorType::LinSpaced(size,low,high); | 
|  | VERIFY_IS_APPROX(m,n); | 
|  | VERIFY( internal::isApprox(m(m.size()-1),high) ); | 
|  | VERIFY( size==1 || internal::isApprox(m(0),low) ); | 
|  | VERIFY_IS_EQUAL(m(m.size()-1) , high); | 
|  | if(!NumTraits<Scalar>::IsInteger) | 
|  | CALL_SUBTEST( check_extremity_accuracy(m, low, high) ); | 
|  | } | 
|  |  | 
|  | VERIFY( numext::real(m(m.size()-1)) <= numext::real(high) ); | 
|  | VERIFY( (m.array().real() <= numext::real(high)).all() ); | 
|  | VERIFY( (m.array().real() >= numext::real(low)).all() ); | 
|  |  | 
|  |  | 
|  | VERIFY( numext::real(m(m.size()-1)) >= numext::real(low) ); | 
|  | if(size>=1) | 
|  | { | 
|  | VERIFY( internal::isApprox(m(0),low) ); | 
|  | VERIFY_IS_EQUAL(m(0) , low); | 
|  | } | 
|  |  | 
|  | // check whether everything works with row and col major vectors | 
|  | Matrix<Scalar,Dynamic,1> row_vector(size); | 
|  | Matrix<Scalar,1,Dynamic> col_vector(size); | 
|  | row_vector.setLinSpaced(size,low,high); | 
|  | col_vector.setLinSpaced(size,low,high); | 
|  | // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit | 
|  | // when computing the squared sum in isApprox, thus the 2x factor. | 
|  | VERIFY( row_vector.isApprox(col_vector.transpose(), RealScalar(2)*NumTraits<Scalar>::epsilon())); | 
|  |  | 
|  | Matrix<Scalar,Dynamic,1> size_changer(size+50); | 
|  | size_changer.setLinSpaced(size,low,high); | 
|  | VERIFY( size_changer.size() == size ); | 
|  |  | 
|  | typedef Matrix<Scalar,1,1> ScalarMatrix; | 
|  | ScalarMatrix scalar; | 
|  | scalar.setLinSpaced(1,low,high); | 
|  | VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) ); | 
|  | VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) ); | 
|  |  | 
|  | // regression test for bug 526 (linear vectorized transversal) | 
|  | if (size > 1 && (!NumTraits<Scalar>::IsInteger)) { | 
|  | m.tail(size-1).setLinSpaced(low, high); | 
|  | VERIFY_IS_APPROX(m(size-1), high); | 
|  | } | 
|  |  | 
|  | // regression test for bug 1383 (LinSpaced with empty size/range) | 
|  | { | 
|  | Index n0 = VectorType::SizeAtCompileTime==Dynamic ? 0 : VectorType::SizeAtCompileTime; | 
|  | low = internal::random<Scalar>(); | 
|  | m = VectorType::LinSpaced(n0,low,low-RealScalar(1)); | 
|  | VERIFY(m.size()==n0); | 
|  |  | 
|  | if(VectorType::SizeAtCompileTime==Dynamic) | 
|  | { | 
|  | VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,0,Scalar(n0-1)).sum(),Scalar(0)); | 
|  | VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,low,low-RealScalar(1)).sum(),Scalar(0)); | 
|  | } | 
|  |  | 
|  | m.setLinSpaced(n0,0,Scalar(n0-1)); | 
|  | VERIFY(m.size()==n0); | 
|  | m.setLinSpaced(n0,low,low-RealScalar(1)); | 
|  | VERIFY(m.size()==n0); | 
|  |  | 
|  | // empty range only: | 
|  | VERIFY_IS_APPROX(VectorType::LinSpaced(size,low,low),VectorType::Constant(size,low)); | 
|  | m.setLinSpaced(size,low,low); | 
|  | VERIFY_IS_APPROX(m,VectorType::Constant(size,low)); | 
|  |  | 
|  | if(NumTraits<Scalar>::IsInteger) | 
|  | { | 
|  | VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar(size-1)), VectorType::LinSpaced(size,low+Scalar(size-1),low).reverse() ); | 
|  |  | 
|  | if(VectorType::SizeAtCompileTime==Dynamic) | 
|  | { | 
|  | // Check negative multiplicator path: | 
|  | for(Index k=1; k<5; ++k) | 
|  | VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar((size-1)*k)), VectorType::LinSpaced(size,low+Scalar((size-1)*k),low).reverse() ); | 
|  | // Check negative divisor path: | 
|  | for(Index k=1; k<5; ++k) | 
|  | VERIFY_IS_APPROX( VectorType::LinSpaced(size*k,low,low+Scalar(size-1)), VectorType::LinSpaced(size*k,low+Scalar(size-1),low).reverse() ); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // test setUnit() | 
|  | if(m.size()>0) | 
|  | { | 
|  | for(Index k=0; k<10; ++k) | 
|  | { | 
|  | Index i = internal::random<Index>(0,m.size()-1); | 
|  | m.setUnit(i); | 
|  | VERIFY_IS_APPROX( m, VectorType::Unit(m.size(), i) ); | 
|  | } | 
|  | if(VectorType::SizeAtCompileTime==Dynamic) | 
|  | { | 
|  | Index i = internal::random<Index>(0,2*m.size()-1); | 
|  | m.setUnit(2*m.size(),i); | 
|  | VERIFY_IS_APPROX( m, VectorType::Unit(m.size(),i) ); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void testMatrixType(const MatrixType& m) | 
|  | { | 
|  | using std::abs; | 
|  | const Index rows = m.rows(); | 
|  | const Index cols = m.cols(); | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  |  | 
|  | Scalar s1; | 
|  | do { | 
|  | s1 = internal::random<Scalar>(); | 
|  | } while(abs(s1)<RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger)); | 
|  |  | 
|  | MatrixType A; | 
|  | A.setIdentity(rows, cols); | 
|  | VERIFY(equalsIdentity(A)); | 
|  | VERIFY(equalsIdentity(MatrixType::Identity(rows, cols))); | 
|  |  | 
|  |  | 
|  | A = MatrixType::Constant(rows,cols,s1); | 
|  | Index i = internal::random<Index>(0,rows-1); | 
|  | Index j = internal::random<Index>(0,cols-1); | 
|  | VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1)(i,j), s1 ); | 
|  | VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1).coeff(i,j), s1 ); | 
|  | VERIFY_IS_APPROX( A(i,j), s1 ); | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void bug79() | 
|  | { | 
|  | // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79). | 
|  | VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<double>::epsilon() ); | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void bug1630() | 
|  | { | 
|  | Array4d x4 = Array4d::LinSpaced(0.0, 1.0); | 
|  | Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3)); | 
|  | VERIFY_IS_APPROX(x4.head(3), x3); | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void nullary_overflow() | 
|  | { | 
|  | // Check possible overflow issue | 
|  | int n = 60000; | 
|  | ArrayXi a1(n), a2(n); | 
|  | a1.setLinSpaced(n, 0, n-1); | 
|  | for(int i=0; i<n; ++i) | 
|  | a2(i) = i; | 
|  | VERIFY_IS_APPROX(a1,a2); | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void nullary_internal_logic() | 
|  | { | 
|  | // check some internal logic | 
|  | VERIFY((  internal::has_nullary_operator<internal::scalar_constant_op<double> >::value )); | 
|  | VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<double> >::value )); | 
|  | VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<double> >::value )); | 
|  | VERIFY((  internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret )); | 
|  |  | 
|  | VERIFY(( !internal::has_nullary_operator<internal::scalar_identity_op<double> >::value )); | 
|  | VERIFY(( !internal::has_unary_operator<internal::scalar_identity_op<double> >::value )); | 
|  | VERIFY((  internal::has_binary_operator<internal::scalar_identity_op<double> >::value )); | 
|  | VERIFY(( !internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret )); | 
|  |  | 
|  | VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<float> >::value )); | 
|  | VERIFY((  internal::has_unary_operator<internal::linspaced_op<float> >::value )); | 
|  | VERIFY(( !internal::has_binary_operator<internal::linspaced_op<float> >::value )); | 
|  | VERIFY((  internal::functor_has_linear_access<internal::linspaced_op<float> >::ret )); | 
|  |  | 
|  | // Regression unit test for a weird MSVC bug. | 
|  | // Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details. | 
|  | // See also traits<Ref>::match. | 
|  | { | 
|  | MatrixXf A = MatrixXf::Random(3,3); | 
|  | Ref<const MatrixXf> R = 2.0*A; | 
|  | VERIFY_IS_APPROX(R, A+A); | 
|  |  | 
|  | Ref<const MatrixXf> R1 = MatrixXf::Random(3,3)+A; | 
|  |  | 
|  | VectorXi V = VectorXi::Random(3); | 
|  | Ref<const VectorXi> R2 = VectorXi::LinSpaced(3,1,3)+V; | 
|  | VERIFY_IS_APPROX(R2, V+Vector3i(1,2,3)); | 
|  |  | 
|  | VERIFY((  internal::has_nullary_operator<internal::scalar_constant_op<float> >::value )); | 
|  | VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<float> >::value )); | 
|  | VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<float> >::value )); | 
|  | VERIFY((  internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret )); | 
|  |  | 
|  | VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<int> >::value )); | 
|  | VERIFY((  internal::has_unary_operator<internal::linspaced_op<int> >::value )); | 
|  | VERIFY(( !internal::has_binary_operator<internal::linspaced_op<int> >::value )); | 
|  | VERIFY((  internal::functor_has_linear_access<internal::linspaced_op<int> >::ret )); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(nullary) | 
|  | { | 
|  | CALL_SUBTEST_1( testMatrixType(Matrix2d()) ); | 
|  | CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) ); | 
|  | CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) ); | 
|  |  | 
|  | for(int i = 0; i < g_repeat*10; i++) { | 
|  | CALL_SUBTEST_3( testVectorType(VectorXcd(internal::random<int>(1,30000))) ); | 
|  | CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,30000))) ); | 
|  | CALL_SUBTEST_5( testVectorType(Vector4d()) );  // regression test for bug 232 | 
|  | CALL_SUBTEST_6( testVectorType(Vector3d()) ); | 
|  | CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,30000))) ); | 
|  | CALL_SUBTEST_8( testVectorType(Vector3f()) ); | 
|  | CALL_SUBTEST_8( testVectorType(Vector4f()) ); | 
|  | CALL_SUBTEST_8( testVectorType(Matrix<float,8,1>()) ); | 
|  | CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) ); | 
|  |  | 
|  | CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(1,10))) ); | 
|  | CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(9,300))) ); | 
|  | CALL_SUBTEST_9( testVectorType(Matrix<int,1,1>()) ); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_6( bug79<0>() ); | 
|  | CALL_SUBTEST_6( bug1630<0>() ); | 
|  | CALL_SUBTEST_9( nullary_overflow<0>() ); | 
|  | CALL_SUBTEST_10( nullary_internal_logic<0>() ); | 
|  | } |