|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/QR> | 
|  |  | 
|  | template<typename Derived1, typename Derived2> | 
|  | bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision()) | 
|  | { | 
|  | return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon | 
|  | * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff())); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void product(const MatrixType& m) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | Identity.h Product.h | 
|  | */ | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType; | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType; | 
|  | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, | 
|  | MatrixType::Flags&RowMajorBit?ColMajor:RowMajor> OtherMajorMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | // this test relies a lot on Random.h, and there's not much more that we can do | 
|  | // to test it, hence I consider that we will have tested Random.h | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), | 
|  | m2 = MatrixType::Random(rows, cols), | 
|  | m3(rows, cols); | 
|  | RowSquareMatrixType | 
|  | identity = RowSquareMatrixType::Identity(rows, rows), | 
|  | square = RowSquareMatrixType::Random(rows, rows), | 
|  | res = RowSquareMatrixType::Random(rows, rows); | 
|  | ColSquareMatrixType | 
|  | square2 = ColSquareMatrixType::Random(cols, cols), | 
|  | res2 = ColSquareMatrixType::Random(cols, cols); | 
|  | RowVectorType v1 = RowVectorType::Random(rows); | 
|  | ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); | 
|  | OtherMajorMatrixType tm1 = m1; | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  |  | 
|  | Index r  = internal::random<Index>(0, rows-1), | 
|  | c  = internal::random<Index>(0, cols-1), | 
|  | c2 = internal::random<Index>(0, cols-1); | 
|  |  | 
|  | // begin testing Product.h: only associativity for now | 
|  | // (we use Transpose.h but this doesn't count as a test for it) | 
|  | VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2)); | 
|  | m3 = m1; | 
|  | m3 *= m1.transpose() * m2; | 
|  | VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2)); | 
|  | VERIFY_IS_APPROX(m3,                      m1 * (m1.transpose()*m2)); | 
|  |  | 
|  | // continue testing Product.h: distributivity | 
|  | VERIFY_IS_APPROX(square*(m1 + m2),        square*m1+square*m2); | 
|  | VERIFY_IS_APPROX(square*(m1 - m2),        square*m1-square*m2); | 
|  |  | 
|  | // continue testing Product.h: compatibility with ScalarMultiple.h | 
|  | VERIFY_IS_APPROX(s1*(square*m1),          (s1*square)*m1); | 
|  | VERIFY_IS_APPROX(s1*(square*m1),          square*(m1*s1)); | 
|  |  | 
|  | // test Product.h together with Identity.h | 
|  | VERIFY_IS_APPROX(v1,                      identity*v1); | 
|  | VERIFY_IS_APPROX(v1.transpose(),          v1.transpose() * identity); | 
|  | // again, test operator() to check const-qualification | 
|  | VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c)); | 
|  |  | 
|  | if (rows!=cols) | 
|  | VERIFY_RAISES_ASSERT(m3 = m1*m1); | 
|  |  | 
|  | // test the previous tests were not screwed up because operator* returns 0 | 
|  | // (we use the more accurate default epsilon) | 
|  | if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1) | 
|  | { | 
|  | VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1)); | 
|  | } | 
|  |  | 
|  | // test optimized operator+= path | 
|  | res = square; | 
|  | res.noalias() += m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); | 
|  | if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1) | 
|  | { | 
|  | VERIFY(areNotApprox(res,square + m2 * m1.transpose())); | 
|  | } | 
|  | vcres = vc2; | 
|  | vcres.noalias() += m1.transpose() * v1; | 
|  | VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); | 
|  |  | 
|  | // test optimized operator-= path | 
|  | res = square; | 
|  | res.noalias() -= m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square - (m1 * m2.transpose())); | 
|  | if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1) | 
|  | { | 
|  | VERIFY(areNotApprox(res,square - m2 * m1.transpose())); | 
|  | } | 
|  | vcres = vc2; | 
|  | vcres.noalias() -= m1.transpose() * v1; | 
|  | VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1); | 
|  |  | 
|  | // test scaled products | 
|  | res = square; | 
|  | res.noalias() = s1 * m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, ((s1*m1).eval() * m2.transpose())); | 
|  | res = square; | 
|  | res.noalias() += s1 * m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square + ((s1*m1).eval() * m2.transpose())); | 
|  | res = square; | 
|  | res.noalias() -= s1 * m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square - ((s1*m1).eval() * m2.transpose())); | 
|  |  | 
|  | // test d ?= a+b*c rules | 
|  | res.noalias() = square + m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); | 
|  | res.noalias() += square + m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, 2*(square + m1 * m2.transpose())); | 
|  | res.noalias() -= square + m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); | 
|  |  | 
|  | // test d ?= a-b*c rules | 
|  | res.noalias() = square - m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square - m1 * m2.transpose()); | 
|  | res.noalias() += square - m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, 2*(square - m1 * m2.transpose())); | 
|  | res.noalias() -= square - m1 * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, square - m1 * m2.transpose()); | 
|  |  | 
|  |  | 
|  | tm1 = m1; | 
|  | VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); | 
|  | VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); | 
|  |  | 
|  | // test submatrix and matrix/vector product | 
|  | for (int i=0; i<rows; ++i) | 
|  | res.row(i) = m1.row(i) * m2.transpose(); | 
|  | VERIFY_IS_APPROX(res, m1 * m2.transpose()); | 
|  | // the other way round: | 
|  | for (int i=0; i<rows; ++i) | 
|  | res.col(i) = m1 * m2.transpose().col(i); | 
|  | VERIFY_IS_APPROX(res, m1 * m2.transpose()); | 
|  |  | 
|  | res2 = square2; | 
|  | res2.noalias() += m1.transpose() * m2; | 
|  | VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2); | 
|  | if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1) | 
|  | { | 
|  | VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1)); | 
|  | } | 
|  |  | 
|  | VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval()); | 
|  | VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval()); | 
|  |  | 
|  | // vector at runtime (see bug 1166) | 
|  | { | 
|  | RowSquareMatrixType ref(square); | 
|  | ColSquareMatrixType ref2(square2); | 
|  | ref = res = square; | 
|  | VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square.transpose(),            (ref.row(0) = m1.col(0).transpose() * square.transpose())); | 
|  | VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square.transpose(), (ref.row(0) = m1.col(0).transpose() * square.transpose())); | 
|  | VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.col(0).transpose() * square,                        (ref.row(0) = m1.col(0).transpose() * square)); | 
|  | VERIFY_IS_APPROX(res.block(0,0,1,rows).noalias() = m1.block(0,0,rows,1).transpose() * square,             (ref.row(0) = m1.col(0).transpose() * square)); | 
|  | ref2 = res2 = square2; | 
|  | VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2.transpose(),                      (ref2.row(0) = m1.row(0) * square2.transpose())); | 
|  | VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2.transpose(),           (ref2.row(0) = m1.row(0) * square2.transpose())); | 
|  | VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.row(0) * square2,                                  (ref2.row(0) = m1.row(0) * square2)); | 
|  | VERIFY_IS_APPROX(res2.block(0,0,1,cols).noalias() = m1.block(0,0,1,cols) * square2,                       (ref2.row(0) = m1.row(0) * square2)); | 
|  | } | 
|  |  | 
|  | // vector.block() (see bug 1283) | 
|  | { | 
|  | RowVectorType w1(rows); | 
|  | VERIFY_IS_APPROX(square * v1.block(0,0,rows,1), square * v1); | 
|  | VERIFY_IS_APPROX(w1.noalias() = square * v1.block(0,0,rows,1), square * v1); | 
|  | VERIFY_IS_APPROX(w1.block(0,0,rows,1).noalias() = square * v1.block(0,0,rows,1), square * v1); | 
|  |  | 
|  | Matrix<Scalar,1,MatrixType::ColsAtCompileTime> w2(cols); | 
|  | VERIFY_IS_APPROX(vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.noalias() = vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = vc2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2); | 
|  |  | 
|  | vc2 = square2.block(0,0,1,cols).transpose(); | 
|  | VERIFY_IS_APPROX(square2.block(0,0,1,cols) * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.noalias() = square2.block(0,0,1,cols) * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = square2.block(0,0,1,cols) * square2, vc2.transpose() * square2); | 
|  |  | 
|  | vc2 = square2.block(0,0,cols,1); | 
|  | VERIFY_IS_APPROX(square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.noalias() = square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2); | 
|  | VERIFY_IS_APPROX(w2.block(0,0,1,cols).noalias() = square2.block(0,0,cols,1).transpose() * square2, vc2.transpose() * square2); | 
|  | } | 
|  |  | 
|  | // inner product | 
|  | { | 
|  | Scalar x = square2.row(c) * square2.col(c2); | 
|  | VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum()); | 
|  | } | 
|  |  | 
|  | // outer product | 
|  | { | 
|  | VERIFY_IS_APPROX(m1.col(c) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols)); | 
|  | VERIFY_IS_APPROX(m1.row(r).transpose() * m1.col(c).transpose(), m1.block(r,0,1,cols).transpose() * m1.block(0,c,rows,1).transpose()); | 
|  | VERIFY_IS_APPROX(m1.block(0,c,rows,1) * m1.row(r), m1.block(0,c,rows,1) * m1.block(r,0,1,cols)); | 
|  | VERIFY_IS_APPROX(m1.col(c) * m1.block(r,0,1,cols), m1.block(0,c,rows,1) * m1.block(r,0,1,cols)); | 
|  | VERIFY_IS_APPROX(m1.leftCols(1) * m1.row(r), m1.block(0,0,rows,1) * m1.block(r,0,1,cols)); | 
|  | VERIFY_IS_APPROX(m1.col(c) * m1.topRows(1), m1.block(0,c,rows,1) * m1.block(0,0,1,cols)); | 
|  | } | 
|  |  | 
|  | // Aliasing | 
|  | { | 
|  | ColVectorType x(cols); x.setRandom(); | 
|  | ColVectorType z(x); | 
|  | ColVectorType y(cols); y.setZero(); | 
|  | ColSquareMatrixType A(cols,cols); A.setRandom(); | 
|  | // CwiseBinaryOp | 
|  | VERIFY_IS_APPROX(x = y + A*x, A*z); | 
|  | x = z; | 
|  | VERIFY_IS_APPROX(x = y - A*x, A*(-z)); | 
|  | x = z; | 
|  | // CwiseUnaryOp | 
|  | VERIFY_IS_APPROX(x = Scalar(1.)*(A*x), A*z); | 
|  | } | 
|  |  | 
|  | // regression for blas_trais | 
|  | { | 
|  | VERIFY_IS_APPROX(square * (square*square).transpose(), square * square.transpose() * square.transpose()); | 
|  | VERIFY_IS_APPROX(square * (-(square*square)), -square * square * square); | 
|  | VERIFY_IS_APPROX(square * (s1*(square*square)), s1 * square * square * square); | 
|  | VERIFY_IS_APPROX(square * (square*square).conjugate(), square * square.conjugate() * square.conjugate()); | 
|  | } | 
|  |  | 
|  | // destination with a non-default inner-stride | 
|  | // see bug 1741 | 
|  | if(!MatrixType::IsRowMajor) | 
|  | { | 
|  | typedef Matrix<Scalar,Dynamic,Dynamic> MatrixX; | 
|  | MatrixX buffer(2*rows,2*rows); | 
|  | Map<RowSquareMatrixType,0,Stride<Dynamic,2> > map1(buffer.data(),rows,rows,Stride<Dynamic,2>(2*rows,2)); | 
|  | buffer.setZero(); | 
|  | VERIFY_IS_APPROX(map1 = m1 * m2.transpose(), (m1 * m2.transpose()).eval()); | 
|  | buffer.setZero(); | 
|  | VERIFY_IS_APPROX(map1.noalias() = m1 * m2.transpose(), (m1 * m2.transpose()).eval()); | 
|  | buffer.setZero(); | 
|  | VERIFY_IS_APPROX(map1.noalias() += m1 * m2.transpose(), (m1 * m2.transpose()).eval()); | 
|  | } | 
|  |  | 
|  | } |