|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "sparse.h" | 
|  | #include "AnnoyingScalar.h" | 
|  |  | 
|  | template<typename T> | 
|  | typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==RowMajorBit, typename T::RowXpr>::type | 
|  | innervec(T& A, Index i) | 
|  | { | 
|  | return A.row(i); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==0, typename T::ColXpr>::type | 
|  | innervec(T& A, Index i) | 
|  | { | 
|  | return A.col(i); | 
|  | } | 
|  |  | 
|  | template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& ref) | 
|  | { | 
|  | const Index rows = ref.rows(); | 
|  | const Index cols = ref.cols(); | 
|  | const Index inner = ref.innerSize(); | 
|  | const Index outer = ref.outerSize(); | 
|  |  | 
|  | typedef typename SparseMatrixType::Scalar Scalar; | 
|  | typedef typename SparseMatrixType::RealScalar RealScalar; | 
|  | typedef typename SparseMatrixType::StorageIndex StorageIndex; | 
|  |  | 
|  | double density = (std::max)(8./(rows*cols), 0.01); | 
|  | typedef Matrix<Scalar,Dynamic,Dynamic,SparseMatrixType::IsRowMajor?RowMajor:ColMajor> DenseMatrix; | 
|  | typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
|  | typedef Matrix<Scalar,1,Dynamic> RowDenseVector; | 
|  | typedef SparseVector<Scalar> SparseVectorType; | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  | { | 
|  | SparseMatrixType m(rows, cols); | 
|  | DenseMatrix refMat = DenseMatrix::Zero(rows, cols); | 
|  | initSparse<Scalar>(density, refMat, m); | 
|  |  | 
|  | VERIFY_IS_APPROX(m, refMat); | 
|  |  | 
|  | // test InnerIterators and Block expressions | 
|  | for (int t=0; t<10; ++t) | 
|  | { | 
|  | Index j = internal::random<Index>(0,cols-2); | 
|  | Index i = internal::random<Index>(0,rows-2); | 
|  | Index w = internal::random<Index>(1,cols-j); | 
|  | Index h = internal::random<Index>(1,rows-i); | 
|  |  | 
|  | VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); | 
|  | for(Index c=0; c<w; c++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); | 
|  | for(Index r=0; r<h; r++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); | 
|  | VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); | 
|  | } | 
|  | } | 
|  | for(Index r=0; r<h; r++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); | 
|  | for(Index c=0; c<w; c++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); | 
|  | VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); | 
|  | } | 
|  | } | 
|  |  | 
|  | VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w)); | 
|  | VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h)); | 
|  | for(Index r=0; r<h; r++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r)); | 
|  | VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r)); | 
|  | for(Index c=0; c<w; c++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r)); | 
|  | VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c)); | 
|  | VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); | 
|  | if(m.middleCols(j,w).coeff(r,c) != Scalar(0)) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c)); | 
|  | } | 
|  | if(m.middleRows(i,h).coeff(r,c) != Scalar(0)) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); | 
|  | } | 
|  | } | 
|  | } | 
|  | for(Index c=0; c<w; c++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c)); | 
|  | VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c)); | 
|  | } | 
|  | } | 
|  |  | 
|  | for(Index c=0; c<cols; c++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); | 
|  | VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); | 
|  | } | 
|  |  | 
|  | for(Index r=0; r<rows; r++) | 
|  | { | 
|  | VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); | 
|  | VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // test innerVector() | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | Index j0 = internal::random<Index>(0,outer-1); | 
|  | Index j1 = internal::random<Index>(0,outer-1); | 
|  | Index r0 = internal::random<Index>(0,rows-1); | 
|  | Index c0 = internal::random<Index>(0,cols-1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2,j0)); | 
|  | VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), innervec(refMat2,j0)+innervec(refMat2,j1)); | 
|  |  | 
|  | m2.innerVector(j0) *= Scalar(2); | 
|  | innervec(refMat2,j0) *= Scalar(2); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | m2.row(r0) *= Scalar(3); | 
|  | refMat2.row(r0) *= Scalar(3); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | m2.col(c0) *= Scalar(4); | 
|  | refMat2.col(c0) *= Scalar(4); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | m2.row(r0) /= Scalar(3); | 
|  | refMat2.row(r0) /= Scalar(3); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | m2.col(c0) /= Scalar(4); | 
|  | refMat2.col(c0) /= Scalar(4); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | SparseVectorType v1; | 
|  | VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0)*4); | 
|  | VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose()*4); | 
|  |  | 
|  | SparseMatrixType m3(rows,cols); | 
|  | m3.reserve(VectorXi::Constant(outer,int(inner/2))); | 
|  | for(Index j=0; j<outer; ++j) | 
|  | for(Index k=0; k<(std::min)(j,inner); ++k) | 
|  | m3.insertByOuterInner(j,k) = internal::convert_index<StorageIndex>(k+1); | 
|  | for(Index j=0; j<(std::min)(outer, inner); ++j) | 
|  | { | 
|  | VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); | 
|  | if(j>0) | 
|  | VERIFY(RealScalar(j)==numext::real(m3.innerVector(j).lastCoeff())); | 
|  | } | 
|  | m3.makeCompressed(); | 
|  | for(Index j=0; j<(std::min)(outer, inner); ++j) | 
|  | { | 
|  | VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); | 
|  | if(j>0) | 
|  | VERIFY(RealScalar(j)==numext::real(m3.innerVector(j).lastCoeff())); | 
|  | } | 
|  |  | 
|  | VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros()); | 
|  |  | 
|  | //     m2.innerVector(j0) = 2*m2.innerVector(j1); | 
|  | //     refMat2.col(j0) = 2*refMat2.col(j1); | 
|  | //     VERIFY_IS_APPROX(m2, refMat2); | 
|  | } | 
|  |  | 
|  | // test innerVectors() | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | if(internal::random<float>(0,1)>0.5f) m2.makeCompressed(); | 
|  | Index j0 = internal::random<Index>(0,outer-2); | 
|  | Index j1 = internal::random<Index>(0,outer-2); | 
|  | Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1)); | 
|  | if(SparseMatrixType::IsRowMajor) | 
|  | VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols)); | 
|  | else | 
|  | VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); | 
|  | if(SparseMatrixType::IsRowMajor) | 
|  | VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), | 
|  | refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0)); | 
|  | else | 
|  | VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), | 
|  | refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | VERIFY(m2.innerVectors(j0,n0).nonZeros() == m2.transpose().innerVectors(j0,n0).nonZeros()); | 
|  |  | 
|  | m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); | 
|  | if(SparseMatrixType::IsRowMajor) | 
|  | refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval(); | 
|  | else | 
|  | refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval(); | 
|  |  | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | } | 
|  |  | 
|  | // test generic blocks | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | Index j0 = internal::random<Index>(0,outer-2); | 
|  | Index j1 = internal::random<Index>(0,outer-2); | 
|  | Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1)); | 
|  | if(SparseMatrixType::IsRowMajor) | 
|  | VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols)); | 
|  | else | 
|  | VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0)); | 
|  |  | 
|  | if(SparseMatrixType::IsRowMajor) | 
|  | VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols), | 
|  | refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols)); | 
|  | else | 
|  | VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0), | 
|  | refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); | 
|  |  | 
|  | Index i = internal::random<Index>(0,m2.outerSize()-1); | 
|  | if(SparseMatrixType::IsRowMajor) { | 
|  | m2.innerVector(i) = m2.innerVector(i) * s1; | 
|  | refMat2.row(i) = refMat2.row(i) * s1; | 
|  | VERIFY_IS_APPROX(m2,refMat2); | 
|  | } else { | 
|  | m2.innerVector(i) = m2.innerVector(i) * s1; | 
|  | refMat2.col(i) = refMat2.col(i) * s1; | 
|  | VERIFY_IS_APPROX(m2,refMat2); | 
|  | } | 
|  |  | 
|  | Index r0 = internal::random<Index>(0,rows-2); | 
|  | Index c0 = internal::random<Index>(0,cols-2); | 
|  | Index r1 = internal::random<Index>(1,rows-r0); | 
|  | Index c1 = internal::random<Index>(1,cols-c0); | 
|  |  | 
|  | VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0)); | 
|  | VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0)); | 
|  |  | 
|  | VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0)); | 
|  | VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m2.block(r0,c0,r1,c1), refMat2.block(r0,c0,r1,c1)); | 
|  | VERIFY_IS_APPROX((2*m2).block(r0,c0,r1,c1), (2*refMat2).block(r0,c0,r1,c1)); | 
|  |  | 
|  | if(m2.nonZeros()>0) | 
|  | { | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | SparseMatrixType m3(rows, cols); | 
|  | DenseMatrix refMat3(rows, cols); refMat3.setZero(); | 
|  | Index n = internal::random<Index>(1,10); | 
|  | for(Index k=0; k<n; ++k) | 
|  | { | 
|  | Index o1 = internal::random<Index>(0,outer-1); | 
|  | Index o2 = internal::random<Index>(0,outer-1); | 
|  | if(SparseMatrixType::IsRowMajor) | 
|  | { | 
|  | m3.innerVector(o1) = m2.row(o2); | 
|  | refMat3.row(o1) = refMat2.row(o2); | 
|  | } | 
|  | else | 
|  | { | 
|  | m3.innerVector(o1) = m2.col(o2); | 
|  | refMat3.col(o1) = refMat2.col(o2); | 
|  | } | 
|  | if(internal::random<bool>()) | 
|  | m3.makeCompressed(); | 
|  | } | 
|  | if(m3.nonZeros()>0) | 
|  | VERIFY_IS_APPROX(m3, refMat3); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(sparse_block) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200); | 
|  | if(Eigen::internal::random<int>(0,4) == 0) { | 
|  | r = c; // check square matrices in 25% of tries | 
|  | } | 
|  | EIGEN_UNUSED_VARIABLE(r+c); | 
|  | CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(1, 1)) )); | 
|  | CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(8, 8)) )); | 
|  | CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(r, c)) )); | 
|  | CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c)) )); | 
|  | CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c)) )); | 
|  |  | 
|  | CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,ColMajor,long int>(r, c)) )); | 
|  | CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,RowMajor,long int>(r, c)) )); | 
|  |  | 
|  | r = Eigen::internal::random<int>(1,100); | 
|  | c = Eigen::internal::random<int>(1,100); | 
|  | if(Eigen::internal::random<int>(0,4) == 0) { | 
|  | r = c; // check square matrices in 25% of tries | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) )); | 
|  | CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) )); | 
|  |  | 
|  | AnnoyingScalar::dont_throw = true; | 
|  | CALL_SUBTEST_5((  sparse_block(SparseMatrix<AnnoyingScalar>(r,c)) )); | 
|  | } | 
|  | } |