| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_MATRIX_POWER | 
 | #define EIGEN_MATRIX_POWER | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | template<typename MatrixType> class MatrixPower; | 
 |  | 
 | /** | 
 |  * \ingroup MatrixFunctions_Module | 
 |  * | 
 |  * \brief Proxy for the matrix power of some matrix. | 
 |  * | 
 |  * \tparam MatrixType  type of the base, a matrix. | 
 |  * | 
 |  * This class holds the arguments to the matrix power until it is | 
 |  * assigned or evaluated for some other reason (so the argument | 
 |  * should not be changed in the meantime). It is the return type of | 
 |  * MatrixPower::operator() and related functions and most of the | 
 |  * time this is the only way it is used. | 
 |  */ | 
 | /* TODO This class is only used by MatrixPower, so it should be nested | 
 |  * into MatrixPower, like MatrixPower::ReturnValue. However, my | 
 |  * compiler complained about unused template parameter in the | 
 |  * following declaration in namespace internal. | 
 |  * | 
 |  * template<typename MatrixType> | 
 |  * struct traits<MatrixPower<MatrixType>::ReturnValue>; | 
 |  */ | 
 | template<typename MatrixType> | 
 | class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParenthesesReturnValue<MatrixType> > | 
 | { | 
 |   public: | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |  | 
 |     /** | 
 |      * \brief Constructor. | 
 |      * | 
 |      * \param[in] pow  %MatrixPower storing the base. | 
 |      * \param[in] p    scalar, the exponent of the matrix power. | 
 |      */ | 
 |     MatrixPowerParenthesesReturnValue(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p) | 
 |     { } | 
 |  | 
 |     /** | 
 |      * \brief Compute the matrix power. | 
 |      * | 
 |      * \param[out] result | 
 |      */ | 
 |     template<typename ResultType> | 
 |     inline void evalTo(ResultType& result) const | 
 |     { m_pow.compute(result, m_p); } | 
 |  | 
 |     Index rows() const { return m_pow.rows(); } | 
 |     Index cols() const { return m_pow.cols(); } | 
 |  | 
 |   private: | 
 |     MatrixPower<MatrixType>& m_pow; | 
 |     const RealScalar m_p; | 
 | }; | 
 |  | 
 | /** | 
 |  * \ingroup MatrixFunctions_Module | 
 |  * | 
 |  * \brief Class for computing matrix powers. | 
 |  * | 
 |  * \tparam MatrixType  type of the base, expected to be an instantiation | 
 |  * of the Matrix class template. | 
 |  * | 
 |  * This class is capable of computing triangular real/complex matrices | 
 |  * raised to a power in the interval \f$ (-1, 1) \f$. | 
 |  * | 
 |  * \note Currently this class is only used by MatrixPower. One may | 
 |  * insist that this be nested into MatrixPower. This class is here to | 
 |  * facilitate future development of triangular matrix functions. | 
 |  */ | 
 | template<typename MatrixType> | 
 | class MatrixPowerAtomic : internal::noncopyable | 
 | { | 
 |   private: | 
 |     enum { | 
 |       RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime | 
 |     }; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef std::complex<RealScalar> ComplexScalar; | 
 |     typedef Block<MatrixType,Dynamic,Dynamic> ResultType; | 
 |  | 
 |     const MatrixType& m_A; | 
 |     RealScalar m_p; | 
 |  | 
 |     void computePade(int degree, const MatrixType& IminusT, ResultType& res) const; | 
 |     void compute2x2(ResultType& res, RealScalar p) const; | 
 |     void computeBig(ResultType& res) const; | 
 |     static int getPadeDegree(float normIminusT); | 
 |     static int getPadeDegree(double normIminusT); | 
 |     static int getPadeDegree(long double normIminusT); | 
 |     static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p); | 
 |     static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p); | 
 |  | 
 |   public: | 
 |     /** | 
 |      * \brief Constructor. | 
 |      * | 
 |      * \param[in] T  the base of the matrix power. | 
 |      * \param[in] p  the exponent of the matrix power, should be in | 
 |      * \f$ (-1, 1) \f$. | 
 |      * | 
 |      * The class stores a reference to T, so it should not be changed | 
 |      * (or destroyed) before evaluation. Only the upper triangular | 
 |      * part of T is read. | 
 |      */ | 
 |     MatrixPowerAtomic(const MatrixType& T, RealScalar p); | 
 |      | 
 |     /** | 
 |      * \brief Compute the matrix power. | 
 |      * | 
 |      * \param[out] res  \f$ A^p \f$ where A and p are specified in the | 
 |      * constructor. | 
 |      */ | 
 |     void compute(ResultType& res) const; | 
 | }; | 
 |  | 
 | template<typename MatrixType> | 
 | MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) : | 
 |   m_A(T), m_p(p) | 
 | { | 
 |   eigen_assert(T.rows() == T.cols()); | 
 |   eigen_assert(p > -1 && p < 1); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void MatrixPowerAtomic<MatrixType>::compute(ResultType& res) const | 
 | { | 
 |   using std::pow; | 
 |   switch (m_A.rows()) { | 
 |     case 0: | 
 |       break; | 
 |     case 1: | 
 |       res(0,0) = pow(m_A(0,0), m_p); | 
 |       break; | 
 |     case 2: | 
 |       compute2x2(res, m_p); | 
 |       break; | 
 |     default: | 
 |       computeBig(res); | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, ResultType& res) const | 
 | { | 
 |   int i = 2*degree; | 
 |   res = (m_p-RealScalar(degree)) / RealScalar(2*i-2) * IminusT; | 
 |  | 
 |   for (--i; i; --i) { | 
 |     res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>() | 
 | 	.solve((i==1 ? -m_p : i&1 ? (-m_p-RealScalar(i/2))/RealScalar(2*i) : (m_p-RealScalar(i/2))/RealScalar(2*i-2)) * IminusT).eval(); | 
 |   } | 
 |   res += MatrixType::Identity(IminusT.rows(), IminusT.cols()); | 
 | } | 
 |  | 
 | // This function assumes that res has the correct size (see bug 614) | 
 | template<typename MatrixType> | 
 | void MatrixPowerAtomic<MatrixType>::compute2x2(ResultType& res, RealScalar p) const | 
 | { | 
 |   using std::abs; | 
 |   using std::pow; | 
 |   res.coeffRef(0,0) = pow(m_A.coeff(0,0), p); | 
 |  | 
 |   for (Index i=1; i < m_A.cols(); ++i) { | 
 |     res.coeffRef(i,i) = pow(m_A.coeff(i,i), p); | 
 |     if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i)) | 
 |       res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1); | 
 |     else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1))) | 
 |       res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1)); | 
 |     else | 
 |       res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p); | 
 |     res.coeffRef(i-1,i) *= m_A.coeff(i-1,i); | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const | 
 | { | 
 |   using std::ldexp; | 
 |   const int digits = std::numeric_limits<RealScalar>::digits; | 
 |   const RealScalar maxNormForPade = RealScalar( | 
 |                                     digits <=  24? 4.3386528e-1L                            // single precision | 
 |                                   : digits <=  53? 2.789358995219730e-1L                    // double precision | 
 |                                   : digits <=  64? 2.4471944416607995472e-1L                // extended precision | 
 |                                   : digits <= 106? 1.1016843812851143391275867258512e-1L    // double-double | 
 |                                   :                9.134603732914548552537150753385375e-2L); // quadruple precision | 
 |   MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>(); | 
 |   RealScalar normIminusT; | 
 |   int degree, degree2, numberOfSquareRoots = 0; | 
 |   bool hasExtraSquareRoot = false; | 
 |  | 
 |   for (Index i=0; i < m_A.cols(); ++i) | 
 |     eigen_assert(m_A(i,i) != RealScalar(0)); | 
 |  | 
 |   while (true) { | 
 |     IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T; | 
 |     normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff(); | 
 |     if (normIminusT < maxNormForPade) { | 
 |       degree = getPadeDegree(normIminusT); | 
 |       degree2 = getPadeDegree(normIminusT/2); | 
 |       if (degree - degree2 <= 1 || hasExtraSquareRoot) | 
 | 	break; | 
 |       hasExtraSquareRoot = true; | 
 |     } | 
 |     matrix_sqrt_triangular(T, sqrtT); | 
 |     T = sqrtT.template triangularView<Upper>(); | 
 |     ++numberOfSquareRoots; | 
 |   } | 
 |   computePade(degree, IminusT, res); | 
 |  | 
 |   for (; numberOfSquareRoots; --numberOfSquareRoots) { | 
 |     compute2x2(res, ldexp(m_p, -numberOfSquareRoots)); | 
 |     res = res.template triangularView<Upper>() * res; | 
 |   } | 
 |   compute2x2(res, m_p); | 
 | } | 
 |    | 
 | template<typename MatrixType> | 
 | inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT) | 
 | { | 
 |   const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f }; | 
 |   int degree = 3; | 
 |   for (; degree <= 4; ++degree) | 
 |     if (normIminusT <= maxNormForPade[degree - 3]) | 
 |       break; | 
 |   return degree; | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT) | 
 | { | 
 |   const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1, | 
 |       1.999045567181744e-1, 2.789358995219730e-1 }; | 
 |   int degree = 3; | 
 |   for (; degree <= 7; ++degree) | 
 |     if (normIminusT <= maxNormForPade[degree - 3]) | 
 |       break; | 
 |   return degree; | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT) | 
 | { | 
 | #if   LDBL_MANT_DIG == 53 | 
 |   const int maxPadeDegree = 7; | 
 |   const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L, | 
 |       1.999045567181744e-1L, 2.789358995219730e-1L }; | 
 | #elif LDBL_MANT_DIG <= 64 | 
 |   const int maxPadeDegree = 8; | 
 |   const long double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L, | 
 |       6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L }; | 
 | #elif LDBL_MANT_DIG <= 106 | 
 |   const int maxPadeDegree = 10; | 
 |   const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ , | 
 |       1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L, | 
 |       2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L, | 
 |       1.1016843812851143391275867258512e-1L }; | 
 | #else | 
 |   const int maxPadeDegree = 10; | 
 |   const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ , | 
 |       6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L, | 
 |       9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L, | 
 |       3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L, | 
 |       9.134603732914548552537150753385375e-2L }; | 
 | #endif | 
 |   int degree = 3; | 
 |   for (; degree <= maxPadeDegree; ++degree) | 
 |     if (normIminusT <= maxNormForPade[degree - 3]) | 
 |       break; | 
 |   return degree; | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar | 
 | MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p) | 
 | { | 
 |   using std::ceil; | 
 |   using std::exp; | 
 |   using std::log; | 
 |   using std::sinh; | 
 |  | 
 |   ComplexScalar logCurr = log(curr); | 
 |   ComplexScalar logPrev = log(prev); | 
 |   RealScalar unwindingNumber = ceil((numext::imag(logCurr - logPrev) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)); | 
 |   ComplexScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2) + ComplexScalar(0, RealScalar(EIGEN_PI)*unwindingNumber); | 
 |   return RealScalar(2) * exp(RealScalar(0.5) * p * (logCurr + logPrev)) * sinh(p * w) / (curr - prev); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | inline typename MatrixPowerAtomic<MatrixType>::RealScalar | 
 | MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p) | 
 | { | 
 |   using std::exp; | 
 |   using std::log; | 
 |   using std::sinh; | 
 |  | 
 |   RealScalar w = numext::log1p((curr-prev)/prev)/RealScalar(2); | 
 |   return 2 * exp(p * (log(curr) + log(prev)) / 2) * sinh(p * w) / (curr - prev); | 
 | } | 
 |  | 
 | /** | 
 |  * \ingroup MatrixFunctions_Module | 
 |  * | 
 |  * \brief Class for computing matrix powers. | 
 |  * | 
 |  * \tparam MatrixType  type of the base, expected to be an instantiation | 
 |  * of the Matrix class template. | 
 |  * | 
 |  * This class is capable of computing real/complex matrices raised to | 
 |  * an arbitrary real power. Meanwhile, it saves the result of Schur | 
 |  * decomposition if an non-integral power has even been calculated. | 
 |  * Therefore, if you want to compute multiple (>= 2) matrix powers | 
 |  * for the same matrix, using the class directly is more efficient than | 
 |  * calling MatrixBase::pow(). | 
 |  * | 
 |  * Example: | 
 |  * \include MatrixPower_optimal.cpp | 
 |  * Output: \verbinclude MatrixPower_optimal.out | 
 |  */ | 
 | template<typename MatrixType> | 
 | class MatrixPower : internal::noncopyable | 
 | { | 
 |   private: | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |  | 
 |   public: | 
 |     /** | 
 |      * \brief Constructor. | 
 |      * | 
 |      * \param[in] A  the base of the matrix power. | 
 |      * | 
 |      * The class stores a reference to A, so it should not be changed | 
 |      * (or destroyed) before evaluation. | 
 |      */ | 
 |     explicit MatrixPower(const MatrixType& A) : | 
 |       m_A(A), | 
 |       m_conditionNumber(0), | 
 |       m_rank(A.cols()), | 
 |       m_nulls(0) | 
 |     { eigen_assert(A.rows() == A.cols()); } | 
 |  | 
 |     /** | 
 |      * \brief Returns the matrix power. | 
 |      * | 
 |      * \param[in] p  exponent, a real scalar. | 
 |      * \return The expression \f$ A^p \f$, where A is specified in the | 
 |      * constructor. | 
 |      */ | 
 |     const MatrixPowerParenthesesReturnValue<MatrixType> operator()(RealScalar p) | 
 |     { return MatrixPowerParenthesesReturnValue<MatrixType>(*this, p); } | 
 |  | 
 |     /** | 
 |      * \brief Compute the matrix power. | 
 |      * | 
 |      * \param[in]  p    exponent, a real scalar. | 
 |      * \param[out] res  \f$ A^p \f$ where A is specified in the | 
 |      * constructor. | 
 |      */ | 
 |     template<typename ResultType> | 
 |     void compute(ResultType& res, RealScalar p); | 
 |      | 
 |     Index rows() const { return m_A.rows(); } | 
 |     Index cols() const { return m_A.cols(); } | 
 |  | 
 |   private: | 
 |     typedef std::complex<RealScalar> ComplexScalar; | 
 |     typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, | 
 |               MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> ComplexMatrix; | 
 |  | 
 |     /** \brief Reference to the base of matrix power. */ | 
 |     typename MatrixType::Nested m_A; | 
 |  | 
 |     /** \brief Temporary storage. */ | 
 |     MatrixType m_tmp; | 
 |  | 
 |     /** \brief Store the result of Schur decomposition. */ | 
 |     ComplexMatrix m_T, m_U; | 
 |      | 
 |     /** \brief Store fractional power of m_T. */ | 
 |     ComplexMatrix m_fT; | 
 |  | 
 |     /** | 
 |      * \brief Condition number of m_A. | 
 |      * | 
 |      * It is initialized as 0 to avoid performing unnecessary Schur | 
 |      * decomposition, which is the bottleneck. | 
 |      */ | 
 |     RealScalar m_conditionNumber; | 
 |  | 
 |     /** \brief Rank of m_A. */ | 
 |     Index m_rank; | 
 |      | 
 |     /** \brief Rank deficiency of m_A. */ | 
 |     Index m_nulls; | 
 |  | 
 |     /** | 
 |      * \brief Split p into integral part and fractional part. | 
 |      * | 
 |      * \param[in]  p        The exponent. | 
 |      * \param[out] p        The fractional part ranging in \f$ (-1, 1) \f$. | 
 |      * \param[out] intpart  The integral part. | 
 |      * | 
 |      * Only if the fractional part is nonzero, it calls initialize(). | 
 |      */ | 
 |     void split(RealScalar& p, RealScalar& intpart); | 
 |  | 
 |     /** \brief Perform Schur decomposition for fractional power. */ | 
 |     void initialize(); | 
 |  | 
 |     template<typename ResultType> | 
 |     void computeIntPower(ResultType& res, RealScalar p); | 
 |  | 
 |     template<typename ResultType> | 
 |     void computeFracPower(ResultType& res, RealScalar p); | 
 |  | 
 |     template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> | 
 |     static void revertSchur( | 
 |         Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, | 
 |         const ComplexMatrix& T, | 
 |         const ComplexMatrix& U); | 
 |  | 
 |     template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> | 
 |     static void revertSchur( | 
 |         Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, | 
 |         const ComplexMatrix& T, | 
 |         const ComplexMatrix& U); | 
 | }; | 
 |  | 
 | template<typename MatrixType> | 
 | template<typename ResultType> | 
 | void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p) | 
 | { | 
 |   using std::pow; | 
 |   switch (cols()) { | 
 |     case 0: | 
 |       break; | 
 |     case 1: | 
 |       res(0,0) = pow(m_A.coeff(0,0), p); | 
 |       break; | 
 |     default: | 
 |       RealScalar intpart; | 
 |       split(p, intpart); | 
 |  | 
 |       res = MatrixType::Identity(rows(), cols()); | 
 |       computeIntPower(res, intpart); | 
 |       if (p) computeFracPower(res, p); | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void MatrixPower<MatrixType>::split(RealScalar& p, RealScalar& intpart) | 
 | { | 
 |   using std::floor; | 
 |   using std::pow; | 
 |  | 
 |   intpart = floor(p); | 
 |   p -= intpart; | 
 |  | 
 |   // Perform Schur decomposition if it is not yet performed and the power is | 
 |   // not an integer. | 
 |   if (!m_conditionNumber && p) | 
 |     initialize(); | 
 |  | 
 |   // Choose the more stable of intpart = floor(p) and intpart = ceil(p). | 
 |   if (p > RealScalar(0.5) && p > (1-p) * pow(m_conditionNumber, p)) { | 
 |     --p; | 
 |     ++intpart; | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | void MatrixPower<MatrixType>::initialize() | 
 | { | 
 |   const ComplexSchur<MatrixType> schurOfA(m_A); | 
 |   JacobiRotation<ComplexScalar> rot; | 
 |   ComplexScalar eigenvalue; | 
 |  | 
 |   m_fT.resizeLike(m_A); | 
 |   m_T = schurOfA.matrixT(); | 
 |   m_U = schurOfA.matrixU(); | 
 |   m_conditionNumber = m_T.diagonal().array().abs().maxCoeff() / m_T.diagonal().array().abs().minCoeff(); | 
 |  | 
 |   // Move zero eigenvalues to the bottom right corner. | 
 |   for (Index i = cols()-1; i>=0; --i) { | 
 |     if (m_rank <= 2) | 
 |       return; | 
 |     if (m_T.coeff(i,i) == RealScalar(0)) { | 
 |       for (Index j=i+1; j < m_rank; ++j) { | 
 |         eigenvalue = m_T.coeff(j,j); | 
 |         rot.makeGivens(m_T.coeff(j-1,j), eigenvalue); | 
 |         m_T.applyOnTheRight(j-1, j, rot); | 
 |         m_T.applyOnTheLeft(j-1, j, rot.adjoint()); | 
 |         m_T.coeffRef(j-1,j-1) = eigenvalue; | 
 |         m_T.coeffRef(j,j) = RealScalar(0); | 
 |         m_U.applyOnTheRight(j-1, j, rot); | 
 |       } | 
 |       --m_rank; | 
 |     } | 
 |   } | 
 |  | 
 |   m_nulls = rows() - m_rank; | 
 |   if (m_nulls) { | 
 |     eigen_assert(m_T.bottomRightCorner(m_nulls, m_nulls).isZero() | 
 |         && "Base of matrix power should be invertible or with a semisimple zero eigenvalue."); | 
 |     m_fT.bottomRows(m_nulls).fill(RealScalar(0)); | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | template<typename ResultType> | 
 | void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p) | 
 | { | 
 |   using std::abs; | 
 |   using std::fmod; | 
 |   RealScalar pp = abs(p); | 
 |  | 
 |   if (p<0)  | 
 |     m_tmp = m_A.inverse(); | 
 |   else      | 
 |     m_tmp = m_A; | 
 |  | 
 |   while (true) { | 
 |     if (fmod(pp, 2) >= 1) | 
 |       res = m_tmp * res; | 
 |     pp /= 2; | 
 |     if (pp < 1) | 
 |       break; | 
 |     m_tmp *= m_tmp; | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | template<typename ResultType> | 
 | void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p) | 
 | { | 
 |   Block<ComplexMatrix,Dynamic,Dynamic> blockTp(m_fT, 0, 0, m_rank, m_rank); | 
 |   eigen_assert(m_conditionNumber); | 
 |   eigen_assert(m_rank + m_nulls == rows()); | 
 |  | 
 |   MatrixPowerAtomic<ComplexMatrix>(m_T.topLeftCorner(m_rank, m_rank), p).compute(blockTp); | 
 |   if (m_nulls) { | 
 |     m_fT.topRightCorner(m_rank, m_nulls) = m_T.topLeftCorner(m_rank, m_rank).template triangularView<Upper>() | 
 |         .solve(blockTp * m_T.topRightCorner(m_rank, m_nulls)); | 
 |   } | 
 |   revertSchur(m_tmp, m_fT, m_U); | 
 |   res = m_tmp * res; | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> | 
 | inline void MatrixPower<MatrixType>::revertSchur( | 
 |     Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, | 
 |     const ComplexMatrix& T, | 
 |     const ComplexMatrix& U) | 
 | { res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); } | 
 |  | 
 | template<typename MatrixType> | 
 | template<int Rows, int Cols, int Options, int MaxRows, int MaxCols> | 
 | inline void MatrixPower<MatrixType>::revertSchur( | 
 |     Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res, | 
 |     const ComplexMatrix& T, | 
 |     const ComplexMatrix& U) | 
 | { res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); } | 
 |  | 
 | /** | 
 |  * \ingroup MatrixFunctions_Module | 
 |  * | 
 |  * \brief Proxy for the matrix power of some matrix (expression). | 
 |  * | 
 |  * \tparam Derived  type of the base, a matrix (expression). | 
 |  * | 
 |  * This class holds the arguments to the matrix power until it is | 
 |  * assigned or evaluated for some other reason (so the argument | 
 |  * should not be changed in the meantime). It is the return type of | 
 |  * MatrixBase::pow() and related functions and most of the | 
 |  * time this is the only way it is used. | 
 |  */ | 
 | template<typename Derived> | 
 | class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> > | 
 | { | 
 |   public: | 
 |     typedef typename Derived::PlainObject PlainObject; | 
 |     typedef typename Derived::RealScalar RealScalar; | 
 |  | 
 |     /** | 
 |      * \brief Constructor. | 
 |      * | 
 |      * \param[in] A  %Matrix (expression), the base of the matrix power. | 
 |      * \param[in] p  real scalar, the exponent of the matrix power. | 
 |      */ | 
 |     MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p) | 
 |     { } | 
 |  | 
 |     /** | 
 |      * \brief Compute the matrix power. | 
 |      * | 
 |      * \param[out] result  \f$ A^p \f$ where \p A and \p p are as in the | 
 |      * constructor. | 
 |      */ | 
 |     template<typename ResultType> | 
 |     inline void evalTo(ResultType& result) const | 
 |     { MatrixPower<PlainObject>(m_A.eval()).compute(result, m_p); } | 
 |  | 
 |     Index rows() const { return m_A.rows(); } | 
 |     Index cols() const { return m_A.cols(); } | 
 |  | 
 |   private: | 
 |     const Derived& m_A; | 
 |     const RealScalar m_p; | 
 | }; | 
 |  | 
 | /** | 
 |  * \ingroup MatrixFunctions_Module | 
 |  * | 
 |  * \brief Proxy for the matrix power of some matrix (expression). | 
 |  * | 
 |  * \tparam Derived  type of the base, a matrix (expression). | 
 |  * | 
 |  * This class holds the arguments to the matrix power until it is | 
 |  * assigned or evaluated for some other reason (so the argument | 
 |  * should not be changed in the meantime). It is the return type of | 
 |  * MatrixBase::pow() and related functions and most of the | 
 |  * time this is the only way it is used. | 
 |  */ | 
 | template<typename Derived> | 
 | class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerReturnValue<Derived> > | 
 | { | 
 |   public: | 
 |     typedef typename Derived::PlainObject PlainObject; | 
 |     typedef typename std::complex<typename Derived::RealScalar> ComplexScalar; | 
 |  | 
 |     /** | 
 |      * \brief Constructor. | 
 |      * | 
 |      * \param[in] A  %Matrix (expression), the base of the matrix power. | 
 |      * \param[in] p  complex scalar, the exponent of the matrix power. | 
 |      */ | 
 |     MatrixComplexPowerReturnValue(const Derived& A, const ComplexScalar& p) : m_A(A), m_p(p) | 
 |     { } | 
 |  | 
 |     /** | 
 |      * \brief Compute the matrix power. | 
 |      * | 
 |      * Because \p p is complex, \f$ A^p \f$ is simply evaluated as \f$ | 
 |      * \exp(p \log(A)) \f$. | 
 |      * | 
 |      * \param[out] result  \f$ A^p \f$ where \p A and \p p are as in the | 
 |      * constructor. | 
 |      */ | 
 |     template<typename ResultType> | 
 |     inline void evalTo(ResultType& result) const | 
 |     { result = (m_p * m_A.log()).exp(); } | 
 |  | 
 |     Index rows() const { return m_A.rows(); } | 
 |     Index cols() const { return m_A.cols(); } | 
 |  | 
 |   private: | 
 |     const Derived& m_A; | 
 |     const ComplexScalar m_p; | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename MatrixPowerType> | 
 | struct traits< MatrixPowerParenthesesReturnValue<MatrixPowerType> > | 
 | { typedef typename MatrixPowerType::PlainObject ReturnType; }; | 
 |  | 
 | template<typename Derived> | 
 | struct traits< MatrixPowerReturnValue<Derived> > | 
 | { typedef typename Derived::PlainObject ReturnType; }; | 
 |  | 
 | template<typename Derived> | 
 | struct traits< MatrixComplexPowerReturnValue<Derived> > | 
 | { typedef typename Derived::PlainObject ReturnType; }; | 
 |  | 
 | } | 
 |  | 
 | template<typename Derived> | 
 | const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const | 
 | { return MatrixPowerReturnValue<Derived>(derived(), p); } | 
 |  | 
 | template<typename Derived> | 
 | const MatrixComplexPowerReturnValue<Derived> MatrixBase<Derived>::pow(const std::complex<RealScalar>& p) const | 
 | { return MatrixComplexPowerReturnValue<Derived>(derived(), p); } | 
 |  | 
 | } // namespace Eigen | 
 |  | 
 | #endif // EIGEN_MATRIX_POWER |