| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| /* |
| |
| NOTE: the _symbolic, and _numeric functions has been adapted from |
| the LDL library: |
| |
| LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved. |
| |
| LDL License: |
| |
| Your use or distribution of LDL or any modified version of |
| LDL implies that you agree to this License. |
| |
| This library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| This library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with this library; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 |
| USA |
| |
| Permission is hereby granted to use or copy this program under the |
| terms of the GNU LGPL, provided that the Copyright, this License, |
| and the Availability of the original version is retained on all copies. |
| User documentation of any code that uses this code or any modified |
| version of this code must cite the Copyright, this License, the |
| Availability note, and "Used by permission." Permission to modify |
| the code and to distribute modified code is granted, provided the |
| Copyright, this License, and the Availability note are retained, |
| and a notice that the code was modified is included. |
| */ |
| |
| #include "../Core/util/NonMPL2.h" |
| |
| #ifndef EIGEN_SIMPLICIAL_CHOLESKY_H |
| #define EIGEN_SIMPLICIAL_CHOLESKY_H |
| |
| namespace Eigen { |
| |
| enum SimplicialCholeskyMode { |
| SimplicialCholeskyLLT, |
| SimplicialCholeskyLDLT |
| }; |
| |
| /** \ingroup SparseCholesky_Module |
| * \brief A direct sparse Cholesky factorizations |
| * |
| * These classes provide LL^T and LDL^T Cholesky factorizations of sparse matrices that are |
| * selfadjoint and positive definite. The factorization allows for solving A.X = B where |
| * X and B can be either dense or sparse. |
| * |
| * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization |
| * such that the factorized matrix is P A P^-1. |
| * |
| * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
| * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
| * or Upper. Default is Lower. |
| * |
| */ |
| template<typename Derived> |
| class SimplicialCholeskyBase : internal::noncopyable |
| { |
| public: |
| typedef typename internal::traits<Derived>::MatrixType MatrixType; |
| enum { UpLo = internal::traits<Derived>::UpLo }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; |
| typedef Matrix<Scalar,Dynamic,1> VectorType; |
| |
| public: |
| |
| /** Default constructor */ |
| SimplicialCholeskyBase() |
| : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1) |
| {} |
| |
| SimplicialCholeskyBase(const MatrixType& matrix) |
| : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1) |
| { |
| derived().compute(matrix); |
| } |
| |
| ~SimplicialCholeskyBase() |
| { |
| } |
| |
| Derived& derived() { return *static_cast<Derived*>(this); } |
| const Derived& derived() const { return *static_cast<const Derived*>(this); } |
| |
| inline Index cols() const { return m_matrix.cols(); } |
| inline Index rows() const { return m_matrix.rows(); } |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was succesful, |
| * \c NumericalIssue if the matrix.appears to be negative. |
| */ |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| return m_info; |
| } |
| |
| /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
| * |
| * \sa compute() |
| */ |
| template<typename Rhs> |
| inline const internal::solve_retval<SimplicialCholeskyBase, Rhs> |
| solve(const MatrixBase<Rhs>& b) const |
| { |
| eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized."); |
| eigen_assert(rows()==b.rows() |
| && "SimplicialCholeskyBase::solve(): invalid number of rows of the right hand side matrix b"); |
| return internal::solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived()); |
| } |
| |
| /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
| * |
| * \sa compute() |
| */ |
| template<typename Rhs> |
| inline const internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs> |
| solve(const SparseMatrixBase<Rhs>& b) const |
| { |
| eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized."); |
| eigen_assert(rows()==b.rows() |
| && "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b"); |
| return internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived()); |
| } |
| |
| /** \returns the permutation P |
| * \sa permutationPinv() */ |
| const PermutationMatrix<Dynamic,Dynamic,Index>& permutationP() const |
| { return m_P; } |
| |
| /** \returns the inverse P^-1 of the permutation P |
| * \sa permutationP() */ |
| const PermutationMatrix<Dynamic,Dynamic,Index>& permutationPinv() const |
| { return m_Pinv; } |
| |
| /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization. |
| * |
| * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n |
| * \c d_ii = \a offset + \a scale * \c d_ii |
| * |
| * The default is the identity transformation with \a offset=0, and \a scale=1. |
| * |
| * \returns a reference to \c *this. |
| */ |
| Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1) |
| { |
| m_shiftOffset = offset; |
| m_shiftScale = scale; |
| return derived(); |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** \internal */ |
| template<typename Stream> |
| void dumpMemory(Stream& s) |
| { |
| int total = 0; |
| s << " L: " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n"; |
| s << " diag: " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n"; |
| s << " tree: " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n"; |
| s << " nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n"; |
| s << " perm: " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n"; |
| s << " perm^-1: " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n"; |
| s << " TOTAL: " << (total>> 20) << "Mb" << "\n"; |
| } |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const |
| { |
| eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
| eigen_assert(m_matrix.rows()==b.rows()); |
| |
| if(m_info!=Success) |
| return; |
| |
| if(m_P.size()>0) |
| dest = m_P * b; |
| else |
| dest = b; |
| |
| if(m_matrix.nonZeros()>0) // otherwise L==I |
| derived().matrixL().solveInPlace(dest); |
| |
| if(m_diag.size()>0) |
| dest = m_diag.asDiagonal().inverse() * dest; |
| |
| if (m_matrix.nonZeros()>0) // otherwise U==I |
| derived().matrixU().solveInPlace(dest); |
| |
| if(m_P.size()>0) |
| dest = m_Pinv * dest; |
| } |
| |
| /** \internal */ |
| template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex> |
| void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const |
| { |
| eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
| eigen_assert(m_matrix.rows()==b.rows()); |
| |
| // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix. |
| static const int NbColsAtOnce = 4; |
| int rhsCols = b.cols(); |
| int size = b.rows(); |
| Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols); |
| for(int k=0; k<rhsCols; k+=NbColsAtOnce) |
| { |
| int actualCols = std::min<int>(rhsCols-k, NbColsAtOnce); |
| tmp.leftCols(actualCols) = b.middleCols(k,actualCols); |
| tmp.leftCols(actualCols) = derived().solve(tmp.leftCols(actualCols)); |
| dest.middleCols(k,actualCols) = tmp.leftCols(actualCols).sparseView(); |
| } |
| } |
| |
| #endif // EIGEN_PARSED_BY_DOXYGEN |
| |
| protected: |
| |
| /** Computes the sparse Cholesky decomposition of \a matrix */ |
| template<bool DoLDLT> |
| void compute(const MatrixType& matrix) |
| { |
| eigen_assert(matrix.rows()==matrix.cols()); |
| Index size = matrix.cols(); |
| CholMatrixType ap(size,size); |
| ordering(matrix, ap); |
| analyzePattern_preordered(ap, DoLDLT); |
| factorize_preordered<DoLDLT>(ap); |
| } |
| |
| template<bool DoLDLT> |
| void factorize(const MatrixType& a) |
| { |
| eigen_assert(a.rows()==a.cols()); |
| int size = a.cols(); |
| CholMatrixType ap(size,size); |
| ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P); |
| factorize_preordered<DoLDLT>(ap); |
| } |
| |
| template<bool DoLDLT> |
| void factorize_preordered(const CholMatrixType& a); |
| |
| void analyzePattern(const MatrixType& a, bool doLDLT) |
| { |
| eigen_assert(a.rows()==a.cols()); |
| int size = a.cols(); |
| CholMatrixType ap(size,size); |
| ordering(a, ap); |
| analyzePattern_preordered(ap,doLDLT); |
| } |
| void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT); |
| |
| void ordering(const MatrixType& a, CholMatrixType& ap); |
| |
| /** keeps off-diagonal entries; drops diagonal entries */ |
| struct keep_diag { |
| inline bool operator() (const Index& row, const Index& col, const Scalar&) const |
| { |
| return row!=col; |
| } |
| }; |
| |
| mutable ComputationInfo m_info; |
| bool m_isInitialized; |
| bool m_factorizationIsOk; |
| bool m_analysisIsOk; |
| |
| CholMatrixType m_matrix; |
| VectorType m_diag; // the diagonal coefficients (LDLT mode) |
| VectorXi m_parent; // elimination tree |
| VectorXi m_nonZerosPerCol; |
| PermutationMatrix<Dynamic,Dynamic,Index> m_P; // the permutation |
| PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // the inverse permutation |
| |
| RealScalar m_shiftOffset; |
| RealScalar m_shiftScale; |
| }; |
| |
| template<typename _MatrixType, int _UpLo = Lower> class SimplicialLLT; |
| template<typename _MatrixType, int _UpLo = Lower> class SimplicialLDLT; |
| template<typename _MatrixType, int _UpLo = Lower> class SimplicialCholesky; |
| |
| namespace internal { |
| |
| template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixType,_UpLo> > |
| { |
| typedef _MatrixType MatrixType; |
| enum { UpLo = _UpLo }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType; |
| typedef SparseTriangularView<CholMatrixType, Eigen::Lower> MatrixL; |
| typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::Upper> MatrixU; |
| static inline MatrixL getL(const MatrixType& m) { return m; } |
| static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } |
| }; |
| |
| template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixType,_UpLo> > |
| { |
| typedef _MatrixType MatrixType; |
| enum { UpLo = _UpLo }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| typedef SparseMatrix<Scalar, ColMajor, Index> CholMatrixType; |
| typedef SparseTriangularView<CholMatrixType, Eigen::UnitLower> MatrixL; |
| typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU; |
| static inline MatrixL getL(const MatrixType& m) { return m; } |
| static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } |
| }; |
| |
| template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_MatrixType,_UpLo> > |
| { |
| typedef _MatrixType MatrixType; |
| enum { UpLo = _UpLo }; |
| }; |
| |
| } |
| |
| /** \ingroup SparseCholesky_Module |
| * \class SimplicialLLT |
| * \brief A direct sparse LLT Cholesky factorizations |
| * |
| * This class provides a LL^T Cholesky factorizations of sparse matrices that are |
| * selfadjoint and positive definite. The factorization allows for solving A.X = B where |
| * X and B can be either dense or sparse. |
| * |
| * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization |
| * such that the factorized matrix is P A P^-1. |
| * |
| * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
| * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
| * or Upper. Default is Lower. |
| * |
| * \sa class SimplicialLDLT |
| */ |
| template<typename _MatrixType, int _UpLo> |
| class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo> > |
| { |
| public: |
| typedef _MatrixType MatrixType; |
| enum { UpLo = _UpLo }; |
| typedef SimplicialCholeskyBase<SimplicialLLT> Base; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; |
| typedef Matrix<Scalar,Dynamic,1> VectorType; |
| typedef internal::traits<SimplicialLLT> Traits; |
| typedef typename Traits::MatrixL MatrixL; |
| typedef typename Traits::MatrixU MatrixU; |
| public: |
| /** Default constructor */ |
| SimplicialLLT() : Base() {} |
| /** Constructs and performs the LLT factorization of \a matrix */ |
| SimplicialLLT(const MatrixType& matrix) |
| : Base(matrix) {} |
| |
| /** \returns an expression of the factor L */ |
| inline const MatrixL matrixL() const { |
| eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); |
| return Traits::getL(Base::m_matrix); |
| } |
| |
| /** \returns an expression of the factor U (= L^*) */ |
| inline const MatrixU matrixU() const { |
| eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized"); |
| return Traits::getU(Base::m_matrix); |
| } |
| |
| /** Computes the sparse Cholesky decomposition of \a matrix */ |
| SimplicialLLT& compute(const MatrixType& matrix) |
| { |
| Base::template compute<false>(matrix); |
| return *this; |
| } |
| |
| /** Performs a symbolic decomposition on the sparcity of \a matrix. |
| * |
| * This function is particularly useful when solving for several problems having the same structure. |
| * |
| * \sa factorize() |
| */ |
| void analyzePattern(const MatrixType& a) |
| { |
| Base::analyzePattern(a, false); |
| } |
| |
| /** Performs a numeric decomposition of \a matrix |
| * |
| * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. |
| * |
| * \sa analyzePattern() |
| */ |
| void factorize(const MatrixType& a) |
| { |
| Base::template factorize<false>(a); |
| } |
| |
| /** \returns the determinant of the underlying matrix from the current factorization */ |
| Scalar determinant() const |
| { |
| Scalar detL = Base::m_matrix.diagonal().prod(); |
| return internal::abs2(detL); |
| } |
| }; |
| |
| /** \ingroup SparseCholesky_Module |
| * \class SimplicialLDLT |
| * \brief A direct sparse LDLT Cholesky factorizations without square root. |
| * |
| * This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are |
| * selfadjoint and positive definite. The factorization allows for solving A.X = B where |
| * X and B can be either dense or sparse. |
| * |
| * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization |
| * such that the factorized matrix is P A P^-1. |
| * |
| * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> |
| * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower |
| * or Upper. Default is Lower. |
| * |
| * \sa class SimplicialLLT |
| */ |
| template<typename _MatrixType, int _UpLo> |
| class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo> > |
| { |
| public: |
| typedef _MatrixType MatrixType; |
| enum { UpLo = _UpLo }; |
| typedef SimplicialCholeskyBase<SimplicialLDLT> Base; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; |
| typedef Matrix<Scalar,Dynamic,1> VectorType; |
| typedef internal::traits<SimplicialLDLT> Traits; |
| typedef typename Traits::MatrixL MatrixL; |
| typedef typename Traits::MatrixU MatrixU; |
| public: |
| /** Default constructor */ |
| SimplicialLDLT() : Base() {} |
| |
| /** Constructs and performs the LLT factorization of \a matrix */ |
| SimplicialLDLT(const MatrixType& matrix) |
| : Base(matrix) {} |
| |
| /** \returns a vector expression of the diagonal D */ |
| inline const VectorType vectorD() const { |
| eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); |
| return Base::m_diag; |
| } |
| /** \returns an expression of the factor L */ |
| inline const MatrixL matrixL() const { |
| eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); |
| return Traits::getL(Base::m_matrix); |
| } |
| |
| /** \returns an expression of the factor U (= L^*) */ |
| inline const MatrixU matrixU() const { |
| eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized"); |
| return Traits::getU(Base::m_matrix); |
| } |
| |
| /** Computes the sparse Cholesky decomposition of \a matrix */ |
| SimplicialLDLT& compute(const MatrixType& matrix) |
| { |
| Base::template compute<true>(matrix); |
| return *this; |
| } |
| |
| /** Performs a symbolic decomposition on the sparcity of \a matrix. |
| * |
| * This function is particularly useful when solving for several problems having the same structure. |
| * |
| * \sa factorize() |
| */ |
| void analyzePattern(const MatrixType& a) |
| { |
| Base::analyzePattern(a, true); |
| } |
| |
| /** Performs a numeric decomposition of \a matrix |
| * |
| * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. |
| * |
| * \sa analyzePattern() |
| */ |
| void factorize(const MatrixType& a) |
| { |
| Base::template factorize<true>(a); |
| } |
| |
| /** \returns the determinant of the underlying matrix from the current factorization */ |
| Scalar determinant() const |
| { |
| return Base::m_diag.prod(); |
| } |
| }; |
| |
| /** \deprecated use SimplicialLDLT or class SimplicialLLT |
| * \ingroup SparseCholesky_Module |
| * \class SimplicialCholesky |
| * |
| * \sa class SimplicialLDLT, class SimplicialLLT |
| */ |
| template<typename _MatrixType, int _UpLo> |
| class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo> > |
| { |
| public: |
| typedef _MatrixType MatrixType; |
| enum { UpLo = _UpLo }; |
| typedef SimplicialCholeskyBase<SimplicialCholesky> Base; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename MatrixType::Index Index; |
| typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType; |
| typedef Matrix<Scalar,Dynamic,1> VectorType; |
| typedef internal::traits<SimplicialCholesky> Traits; |
| typedef internal::traits<SimplicialLDLT<MatrixType,UpLo> > LDLTTraits; |
| typedef internal::traits<SimplicialLLT<MatrixType,UpLo> > LLTTraits; |
| public: |
| SimplicialCholesky() : Base(), m_LDLT(true) {} |
| |
| SimplicialCholesky(const MatrixType& matrix) |
| : Base(), m_LDLT(true) |
| { |
| compute(matrix); |
| } |
| |
| SimplicialCholesky& setMode(SimplicialCholeskyMode mode) |
| { |
| switch(mode) |
| { |
| case SimplicialCholeskyLLT: |
| m_LDLT = false; |
| break; |
| case SimplicialCholeskyLDLT: |
| m_LDLT = true; |
| break; |
| default: |
| break; |
| } |
| |
| return *this; |
| } |
| |
| inline const VectorType vectorD() const { |
| eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); |
| return Base::m_diag; |
| } |
| inline const CholMatrixType rawMatrix() const { |
| eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized"); |
| return Base::m_matrix; |
| } |
| |
| /** Computes the sparse Cholesky decomposition of \a matrix */ |
| SimplicialCholesky& compute(const MatrixType& matrix) |
| { |
| if(m_LDLT) |
| Base::template compute<true>(matrix); |
| else |
| Base::template compute<false>(matrix); |
| return *this; |
| } |
| |
| /** Performs a symbolic decomposition on the sparcity of \a matrix. |
| * |
| * This function is particularly useful when solving for several problems having the same structure. |
| * |
| * \sa factorize() |
| */ |
| void analyzePattern(const MatrixType& a) |
| { |
| Base::analyzePattern(a, m_LDLT); |
| } |
| |
| /** Performs a numeric decomposition of \a matrix |
| * |
| * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. |
| * |
| * \sa analyzePattern() |
| */ |
| void factorize(const MatrixType& a) |
| { |
| if(m_LDLT) |
| Base::template factorize<true>(a); |
| else |
| Base::template factorize<false>(a); |
| } |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const |
| { |
| eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); |
| eigen_assert(Base::m_matrix.rows()==b.rows()); |
| |
| if(Base::m_info!=Success) |
| return; |
| |
| if(Base::m_P.size()>0) |
| dest = Base::m_P * b; |
| else |
| dest = b; |
| |
| if(Base::m_matrix.nonZeros()>0) // otherwise L==I |
| { |
| if(m_LDLT) |
| LDLTTraits::getL(Base::m_matrix).solveInPlace(dest); |
| else |
| LLTTraits::getL(Base::m_matrix).solveInPlace(dest); |
| } |
| |
| if(Base::m_diag.size()>0) |
| dest = Base::m_diag.asDiagonal().inverse() * dest; |
| |
| if (Base::m_matrix.nonZeros()>0) // otherwise I==I |
| { |
| if(m_LDLT) |
| LDLTTraits::getU(Base::m_matrix).solveInPlace(dest); |
| else |
| LLTTraits::getU(Base::m_matrix).solveInPlace(dest); |
| } |
| |
| if(Base::m_P.size()>0) |
| dest = Base::m_Pinv * dest; |
| } |
| |
| Scalar determinant() const |
| { |
| if(m_LDLT) |
| { |
| return Base::m_diag.prod(); |
| } |
| else |
| { |
| Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod(); |
| return internal::abs2(detL); |
| } |
| } |
| |
| protected: |
| bool m_LDLT; |
| }; |
| |
| template<typename Derived> |
| void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixType& ap) |
| { |
| eigen_assert(a.rows()==a.cols()); |
| const Index size = a.rows(); |
| // TODO allows to configure the permutation |
| // Note that amd compute the inverse permutation |
| { |
| CholMatrixType C; |
| C = a.template selfadjointView<UpLo>(); |
| // remove diagonal entries: |
| // seems not to be needed |
| // C.prune(keep_diag()); |
| internal::minimum_degree_ordering(C, m_Pinv); |
| } |
| |
| if(m_Pinv.size()>0) |
| m_P = m_Pinv.inverse(); |
| else |
| m_P.resize(0); |
| |
| ap.resize(size,size); |
| ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P); |
| } |
| |
| template<typename Derived> |
| void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT) |
| { |
| const Index size = ap.rows(); |
| m_matrix.resize(size, size); |
| m_parent.resize(size); |
| m_nonZerosPerCol.resize(size); |
| |
| ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0); |
| |
| for(Index k = 0; k < size; ++k) |
| { |
| /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ |
| m_parent[k] = -1; /* parent of k is not yet known */ |
| tags[k] = k; /* mark node k as visited */ |
| m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */ |
| for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) |
| { |
| Index i = it.index(); |
| if(i < k) |
| { |
| /* follow path from i to root of etree, stop at flagged node */ |
| for(; tags[i] != k; i = m_parent[i]) |
| { |
| /* find parent of i if not yet determined */ |
| if (m_parent[i] == -1) |
| m_parent[i] = k; |
| m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */ |
| tags[i] = k; /* mark i as visited */ |
| } |
| } |
| } |
| } |
| |
| /* construct Lp index array from m_nonZerosPerCol column counts */ |
| Index* Lp = m_matrix.outerIndexPtr(); |
| Lp[0] = 0; |
| for(Index k = 0; k < size; ++k) |
| Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1); |
| |
| m_matrix.resizeNonZeros(Lp[size]); |
| |
| m_isInitialized = true; |
| m_info = Success; |
| m_analysisIsOk = true; |
| m_factorizationIsOk = false; |
| } |
| |
| |
| template<typename Derived> |
| template<bool DoLDLT> |
| void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap) |
| { |
| using std::sqrt; |
| |
| eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); |
| eigen_assert(ap.rows()==ap.cols()); |
| const Index size = ap.rows(); |
| eigen_assert(m_parent.size()==size); |
| eigen_assert(m_nonZerosPerCol.size()==size); |
| |
| const Index* Lp = m_matrix.outerIndexPtr(); |
| Index* Li = m_matrix.innerIndexPtr(); |
| Scalar* Lx = m_matrix.valuePtr(); |
| |
| ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0); |
| ei_declare_aligned_stack_constructed_variable(Index, pattern, size, 0); |
| ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0); |
| |
| bool ok = true; |
| m_diag.resize(DoLDLT ? size : 0); |
| |
| for(Index k = 0; k < size; ++k) |
| { |
| // compute nonzero pattern of kth row of L, in topological order |
| y[k] = 0.0; // Y(0:k) is now all zero |
| Index top = size; // stack for pattern is empty |
| tags[k] = k; // mark node k as visited |
| m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L |
| for(typename MatrixType::InnerIterator it(ap,k); it; ++it) |
| { |
| Index i = it.index(); |
| if(i <= k) |
| { |
| y[i] += internal::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */ |
| Index len; |
| for(len = 0; tags[i] != k; i = m_parent[i]) |
| { |
| pattern[len++] = i; /* L(k,i) is nonzero */ |
| tags[i] = k; /* mark i as visited */ |
| } |
| while(len > 0) |
| pattern[--top] = pattern[--len]; |
| } |
| } |
| |
| /* compute numerical values kth row of L (a sparse triangular solve) */ |
| |
| RealScalar d = internal::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k) |
| y[k] = 0.0; |
| for(; top < size; ++top) |
| { |
| Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */ |
| Scalar yi = y[i]; /* get and clear Y(i) */ |
| y[i] = 0.0; |
| |
| /* the nonzero entry L(k,i) */ |
| Scalar l_ki; |
| if(DoLDLT) |
| l_ki = yi / m_diag[i]; |
| else |
| yi = l_ki = yi / Lx[Lp[i]]; |
| |
| Index p2 = Lp[i] + m_nonZerosPerCol[i]; |
| Index p; |
| for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p) |
| y[Li[p]] -= internal::conj(Lx[p]) * yi; |
| d -= internal::real(l_ki * internal::conj(yi)); |
| Li[p] = k; /* store L(k,i) in column form of L */ |
| Lx[p] = l_ki; |
| ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */ |
| } |
| if(DoLDLT) |
| { |
| m_diag[k] = d; |
| if(d == RealScalar(0)) |
| { |
| ok = false; /* failure, D(k,k) is zero */ |
| break; |
| } |
| } |
| else |
| { |
| Index p = Lp[k] + m_nonZerosPerCol[k]++; |
| Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */ |
| if(d <= RealScalar(0)) { |
| ok = false; /* failure, matrix is not positive definite */ |
| break; |
| } |
| Lx[p] = sqrt(d) ; |
| } |
| } |
| |
| m_info = ok ? Success : NumericalIssue; |
| m_factorizationIsOk = true; |
| } |
| |
| namespace internal { |
| |
| template<typename Derived, typename Rhs> |
| struct solve_retval<SimplicialCholeskyBase<Derived>, Rhs> |
| : solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs> |
| { |
| typedef SimplicialCholeskyBase<Derived> Dec; |
| EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| dec().derived()._solve(rhs(),dst); |
| } |
| }; |
| |
| template<typename Derived, typename Rhs> |
| struct sparse_solve_retval<SimplicialCholeskyBase<Derived>, Rhs> |
| : sparse_solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs> |
| { |
| typedef SimplicialCholeskyBase<Derived> Dec; |
| EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| dec().derived()._solve_sparse(rhs(),dst); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SIMPLICIAL_CHOLESKY_H |