| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "matrix_functions.h" |
| |
| template<typename T> |
| void test2dRotation(double tol) |
| { |
| Matrix<T,2,2> A, B, C; |
| T angle, c, s; |
| |
| A << 0, 1, -1, 0; |
| MatrixPower<Matrix<T,2,2> > Apow(A); |
| |
| for (int i=0; i<=20; ++i) { |
| angle = pow(10, (i-10) / 5.); |
| c = std::cos(angle); |
| s = std::sin(angle); |
| B << c, s, -s, c; |
| |
| C = Apow(std::ldexp(angle,1) / M_PI); |
| std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n'; |
| VERIFY(C.isApprox(B, static_cast<T>(tol))); |
| } |
| } |
| |
| template<typename T> |
| void test2dHyperbolicRotation(double tol) |
| { |
| Matrix<std::complex<T>,2,2> A, B, C; |
| T angle, ch = std::cosh((T)1); |
| std::complex<T> ish(0, std::sinh((T)1)); |
| |
| A << ch, ish, -ish, ch; |
| MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A); |
| |
| for (int i=0; i<=20; ++i) { |
| angle = std::ldexp(static_cast<T>(i-10), -1); |
| ch = std::cosh(angle); |
| ish = std::complex<T>(0, std::sinh(angle)); |
| B << ch, ish, -ish, ch; |
| |
| C = Apow(angle); |
| std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n'; |
| VERIFY(C.isApprox(B, static_cast<T>(tol))); |
| } |
| } |
| |
| template<typename MatrixType> |
| void testExponentLaws(const MatrixType& m, double tol) |
| { |
| typedef typename MatrixType::RealScalar RealScalar; |
| MatrixType m1, m2, m3, m4, m5; |
| RealScalar x, y; |
| |
| for (int i=0; i<g_repeat; ++i) { |
| generateTestMatrix<MatrixType>::run(m1, m.rows()); |
| MatrixPower<MatrixType> mpow(m1); |
| |
| x = internal::random<RealScalar>(); |
| y = internal::random<RealScalar>(); |
| m2 = mpow(x); |
| m3 = mpow(y); |
| |
| m4 = mpow(x+y); |
| m5.noalias() = m2 * m3; |
| VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol))); |
| |
| m4 = mpow(x*y); |
| m5 = m2.pow(y); |
| VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol))); |
| |
| m4 = (std::abs(x) * m1).pow(y); |
| m5 = std::pow(std::abs(x), y) * m3; |
| VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol))); |
| } |
| } |
| |
| template<typename MatrixType, typename VectorType> |
| void testProduct(const MatrixType& m, const VectorType& v, double tol) |
| { |
| typedef typename MatrixType::RealScalar RealScalar; |
| MatrixType m1; |
| VectorType v1, v2, v3; |
| RealScalar p; |
| |
| for (int i=0; i<g_repeat; ++i) { |
| generateTestMatrix<MatrixType>::run(m1, m.rows()); |
| MatrixPower<MatrixType> mpow(m1); |
| |
| v1 = VectorType::Random(v.rows(), v.cols()); |
| p = internal::random<RealScalar>(); |
| |
| v2.noalias() = mpow(p) * v1; |
| v3.noalias() = mpow(p).eval() * v1; |
| std::cout << "testMatrixVectorProduct: error powerm = " << relerr(v2, v3) << '\n'; |
| VERIFY(v2.isApprox(v3, static_cast<RealScalar>(tol))); |
| } |
| } |
| |
| template<typename MatrixType, typename VectorType> |
| void testMatrixVector(const MatrixType& m, const VectorType& v, double tol) |
| { |
| testExponentLaws(m,tol); |
| testProduct(m,v,tol); |
| } |
| |
| void test_matrix_power() |
| { |
| typedef Matrix<double,3,3,RowMajor> Matrix3dRowMajor; |
| typedef Matrix<long double,Dynamic,Dynamic> MatrixXe; |
| typedef Matrix<long double,Dynamic,1> VectorXe; |
| |
| CALL_SUBTEST_2(test2dRotation<double>(1e-13)); |
| CALL_SUBTEST_1(test2dRotation<float>(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64 |
| CALL_SUBTEST_9(test2dRotation<long double>(1e-13)); |
| CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14)); |
| CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5)); |
| CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14)); |
| |
| CALL_SUBTEST_2(testMatrixVector(Matrix2d(), Vector2d(), 1e-13)); |
| CALL_SUBTEST_7(testMatrixVector(Matrix3dRowMajor(), MatrixXd(3,5), 1e-13)); |
| CALL_SUBTEST_3(testMatrixVector(Matrix4cd(), Vector4cd(), 1e-13)); |
| CALL_SUBTEST_4(testMatrixVector(MatrixXd(8,8), VectorXd(8), 1e-13)); |
| CALL_SUBTEST_1(testMatrixVector(Matrix2f(), Vector2f(), 1e-4)); |
| CALL_SUBTEST_5(testMatrixVector(Matrix3cf(), Vector3cf(), 1e-4)); |
| CALL_SUBTEST_8(testMatrixVector(Matrix4f(), Vector4f(), 1e-4)); |
| CALL_SUBTEST_6(testMatrixVector(MatrixXf(8,8), VectorXf(8), 1e-4)); |
| CALL_SUBTEST_9(testMatrixVector(MatrixXe(7,7), VectorXe(7), 1e-13)); |
| } |