| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2007 Julien Pommier |
| // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) |
| // Copyright (C) 2009-2019 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| /* The exp and log functions of this file initially come from |
| * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ |
| */ |
| |
| #ifndef EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H |
| #define EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H |
| |
| namespace Eigen { |
| namespace internal { |
| |
| template<typename Packet> EIGEN_STRONG_INLINE Packet |
| pfrexp_float(const Packet& a, Packet& exponent) { |
| typedef typename unpacket_traits<Packet>::integer_packet PacketI; |
| const Packet cst_126f = pset1<Packet>(126.0f); |
| const Packet cst_half = pset1<Packet>(0.5f); |
| const Packet cst_inv_mant_mask = pset1frombits<Packet>(~0x7f800000u); |
| exponent = psub(pcast<PacketI,Packet>(plogical_shift_right<23>(preinterpret<PacketI>(a))), cst_126f); |
| return por(pand(a, cst_inv_mant_mask), cst_half); |
| } |
| |
| template<typename Packet> EIGEN_STRONG_INLINE Packet |
| pfrexp_double(const Packet& a, Packet& exponent) { |
| typedef typename unpacket_traits<Packet>::integer_packet PacketI; |
| const Packet cst_1022d = pset1<Packet>(1022.0); |
| const Packet cst_half = pset1<Packet>(0.5); |
| const Packet cst_inv_mant_mask = pset1frombits<Packet>(~0x7ff0000000000000u); |
| exponent = psub(pcast<PacketI,Packet>(plogical_shift_right<52>(preinterpret<PacketI>(a))), cst_1022d); |
| return por(pand(a, cst_inv_mant_mask), cst_half); |
| } |
| |
| template<typename Packet> EIGEN_STRONG_INLINE Packet |
| pldexp_float(Packet a, Packet exponent) |
| { |
| typedef typename unpacket_traits<Packet>::integer_packet PacketI; |
| const Packet cst_127 = pset1<Packet>(127.f); |
| // return a * 2^exponent |
| PacketI ei = pcast<Packet,PacketI>(padd(exponent, cst_127)); |
| return pmul(a, preinterpret<Packet>(plogical_shift_left<23>(ei))); |
| } |
| |
| template<typename Packet> EIGEN_STRONG_INLINE Packet |
| pldexp_double(Packet a, Packet exponent) |
| { |
| typedef typename unpacket_traits<Packet>::integer_packet PacketI; |
| const Packet cst_1023 = pset1<Packet>(1023.0); |
| // return a * 2^exponent |
| PacketI ei = pcast<Packet,PacketI>(padd(exponent, cst_1023)); |
| return pmul(a, preinterpret<Packet>(plogical_shift_left<52>(ei))); |
| } |
| |
| // Natural logarithm |
| // Computes log(x) as log(2^e * m) = C*e + log(m), where the constant C =log(2) |
| // and m is in the range [sqrt(1/2),sqrt(2)). In this range, the logarithm can |
| // be easily approximated by a polynomial centered on m=1 for stability. |
| // TODO(gonnet): Further reduce the interval allowing for lower-degree |
| // polynomial interpolants -> ... -> profit! |
| template <typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet plog_float(const Packet _x) |
| { |
| Packet x = _x; |
| |
| const Packet cst_1 = pset1<Packet>(1.0f); |
| const Packet cst_half = pset1<Packet>(0.5f); |
| // The smallest non denormalized float number. |
| const Packet cst_min_norm_pos = pset1frombits<Packet>( 0x00800000u); |
| const Packet cst_minus_inf = pset1frombits<Packet>( 0xff800000u); |
| const Packet cst_pos_inf = pset1frombits<Packet>( 0x7f800000u); |
| |
| // Polynomial coefficients. |
| const Packet cst_cephes_SQRTHF = pset1<Packet>(0.707106781186547524f); |
| const Packet cst_cephes_log_p0 = pset1<Packet>(7.0376836292E-2f); |
| const Packet cst_cephes_log_p1 = pset1<Packet>(-1.1514610310E-1f); |
| const Packet cst_cephes_log_p2 = pset1<Packet>(1.1676998740E-1f); |
| const Packet cst_cephes_log_p3 = pset1<Packet>(-1.2420140846E-1f); |
| const Packet cst_cephes_log_p4 = pset1<Packet>(+1.4249322787E-1f); |
| const Packet cst_cephes_log_p5 = pset1<Packet>(-1.6668057665E-1f); |
| const Packet cst_cephes_log_p6 = pset1<Packet>(+2.0000714765E-1f); |
| const Packet cst_cephes_log_p7 = pset1<Packet>(-2.4999993993E-1f); |
| const Packet cst_cephes_log_p8 = pset1<Packet>(+3.3333331174E-1f); |
| const Packet cst_cephes_log_q1 = pset1<Packet>(-2.12194440e-4f); |
| const Packet cst_cephes_log_q2 = pset1<Packet>(0.693359375f); |
| |
| // Truncate input values to the minimum positive normal. |
| x = pmax(x, cst_min_norm_pos); |
| |
| Packet e; |
| // extract significant in the range [0.5,1) and exponent |
| x = pfrexp(x,e); |
| |
| // part2: Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) |
| // and shift by -1. The values are then centered around 0, which improves |
| // the stability of the polynomial evaluation. |
| // if( x < SQRTHF ) { |
| // e -= 1; |
| // x = x + x - 1.0; |
| // } else { x = x - 1.0; } |
| Packet mask = pcmp_lt(x, cst_cephes_SQRTHF); |
| Packet tmp = pand(x, mask); |
| x = psub(x, cst_1); |
| e = psub(e, pand(cst_1, mask)); |
| x = padd(x, tmp); |
| |
| Packet x2 = pmul(x, x); |
| Packet x3 = pmul(x2, x); |
| |
| // Evaluate the polynomial approximant of degree 8 in three parts, probably |
| // to improve instruction-level parallelism. |
| Packet y, y1, y2; |
| y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1); |
| y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4); |
| y2 = pmadd(cst_cephes_log_p6, x, cst_cephes_log_p7); |
| y = pmadd(y, x, cst_cephes_log_p2); |
| y1 = pmadd(y1, x, cst_cephes_log_p5); |
| y2 = pmadd(y2, x, cst_cephes_log_p8); |
| y = pmadd(y, x3, y1); |
| y = pmadd(y, x3, y2); |
| y = pmul(y, x3); |
| |
| // Add the logarithm of the exponent back to the result of the interpolation. |
| y1 = pmul(e, cst_cephes_log_q1); |
| tmp = pmul(x2, cst_half); |
| y = padd(y, y1); |
| x = psub(x, tmp); |
| y2 = pmul(e, cst_cephes_log_q2); |
| x = padd(x, y); |
| x = padd(x, y2); |
| |
| Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x)); |
| Packet iszero_mask = pcmp_eq(_x,pzero(_x)); |
| Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf); |
| // Filter out invalid inputs, i.e.: |
| // - negative arg will be NAN |
| // - 0 will be -INF |
| // - +INF will be +INF |
| return pselect(iszero_mask, cst_minus_inf, |
| por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask)); |
| } |
| |
| |
| /* Returns the base e (2.718...) logarithm of x. |
| * The argument is separated into its exponent and fractional |
| * parts. If the exponent is between -1 and +1, the logarithm |
| * of the fraction is approximated by |
| * |
| * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). |
| * |
| * Otherwise, setting z = 2(x-1)/x+1), |
| * log(x) = z + z**3 P(z)/Q(z). |
| * |
| * for more detail see: http://www.netlib.org/cephes/ |
| */ |
| template <typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet plog_double(const Packet _x) |
| { |
| Packet x = _x; |
| |
| const Packet cst_1 = pset1<Packet>(1.0); |
| const Packet cst_half = pset1<Packet>(0.5); |
| // The smallest non denormalized float number. |
| const Packet cst_min_norm_pos = pset1frombits<Packet>( 0x0010000000000000u); |
| const Packet cst_minus_inf = pset1frombits<Packet>( 0xfff0000000000000u); |
| const Packet cst_pos_inf = pset1frombits<Packet>( 0x7ff0000000000000u); |
| |
| // Polynomial Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) |
| // 1/sqrt(2) <= x < sqrt(2) |
| const Packet cst_cephes_SQRTHF = pset1<Packet>(0.70710678118654752440E0); |
| const Packet cst_cephes_log_p0 = pset1<Packet>(1.01875663804580931796E-4); |
| const Packet cst_cephes_log_p1 = pset1<Packet>(4.97494994976747001425E-1); |
| const Packet cst_cephes_log_p2 = pset1<Packet>(4.70579119878881725854E0); |
| const Packet cst_cephes_log_p3 = pset1<Packet>(1.44989225341610930846E1); |
| const Packet cst_cephes_log_p4 = pset1<Packet>(1.79368678507819816313E1); |
| const Packet cst_cephes_log_p5 = pset1<Packet>(7.70838733755885391666E0); |
| |
| const Packet cst_cephes_log_r0 = pset1<Packet>(1.0); |
| const Packet cst_cephes_log_r1 = pset1<Packet>(1.12873587189167450590E1); |
| const Packet cst_cephes_log_r2 = pset1<Packet>(4.52279145837532221105E1); |
| const Packet cst_cephes_log_r3 = pset1<Packet>(8.29875266912776603211E1); |
| const Packet cst_cephes_log_r4 = pset1<Packet>(7.11544750618563894466E1); |
| const Packet cst_cephes_log_r5 = pset1<Packet>(2.31251620126765340583E1); |
| |
| const Packet cst_cephes_log_q1 = pset1<Packet>(-2.121944400546905827679e-4); |
| const Packet cst_cephes_log_q2 = pset1<Packet>(0.693359375); |
| |
| // Truncate input values to the minimum positive normal. |
| x = pmax(x, cst_min_norm_pos); |
| |
| Packet e; |
| // extract significant in the range [0.5,1) and exponent |
| x = pfrexp(x,e); |
| |
| // Shift the inputs from the range [0.5,1) to [sqrt(1/2),sqrt(2)) |
| // and shift by -1. The values are then centered around 0, which improves |
| // the stability of the polynomial evaluation. |
| // if( x < SQRTHF ) { |
| // e -= 1; |
| // x = x + x - 1.0; |
| // } else { x = x - 1.0; } |
| Packet mask = pcmp_lt(x, cst_cephes_SQRTHF); |
| Packet tmp = pand(x, mask); |
| x = psub(x, cst_1); |
| e = psub(e, pand(cst_1, mask)); |
| x = padd(x, tmp); |
| |
| Packet x2 = pmul(x, x); |
| Packet x3 = pmul(x2, x); |
| |
| // Evaluate the polynomial approximant , probably to improve instruction-level parallelism. |
| // y = x * ( z * polevl( x, P, 5 ) / p1evl( x, Q, 5 ) ); |
| Packet y, y1, y2,y_; |
| y = pmadd(cst_cephes_log_p0, x, cst_cephes_log_p1); |
| y1 = pmadd(cst_cephes_log_p3, x, cst_cephes_log_p4); |
| y = pmadd(y, x, cst_cephes_log_p2); |
| y1 = pmadd(y1, x, cst_cephes_log_p5); |
| y_ = pmadd(y, x3, y1); |
| |
| y = pmadd(cst_cephes_log_r0, x, cst_cephes_log_r1); |
| y1 = pmadd(cst_cephes_log_r3, x, cst_cephes_log_r4); |
| y = pmadd(y, x, cst_cephes_log_r2); |
| y1 = pmadd(y1, x, cst_cephes_log_r5); |
| y = pmadd(y, x3, y1); |
| |
| y_ = pmul(y_, x3); |
| y = pdiv(y_, y); |
| |
| // Add the logarithm of the exponent back to the result of the interpolation. |
| y1 = pmul(e, cst_cephes_log_q1); |
| tmp = pmul(x2, cst_half); |
| y = padd(y, y1); |
| x = psub(x, tmp); |
| y2 = pmul(e, cst_cephes_log_q2); |
| x = padd(x, y); |
| x = padd(x, y2); |
| |
| Packet invalid_mask = pcmp_lt_or_nan(_x, pzero(_x)); |
| Packet iszero_mask = pcmp_eq(_x,pzero(_x)); |
| Packet pos_inf_mask = pcmp_eq(_x,cst_pos_inf); |
| // Filter out invalid inputs, i.e.: |
| // - negative arg will be NAN |
| // - 0 will be -INF |
| // - +INF will be +INF |
| return pselect(iszero_mask, cst_minus_inf, |
| por(pselect(pos_inf_mask,cst_pos_inf,x), invalid_mask)); |
| } |
| |
| /** \internal \returns log(1 + x) computed using W. Kahan's formula. |
| See: http://www.plunk.org/~hatch/rightway.php |
| */ |
| template<typename Packet> |
| Packet generic_plog1p(const Packet& x) |
| { |
| typedef typename unpacket_traits<Packet>::type ScalarType; |
| const Packet one = pset1<Packet>(ScalarType(1)); |
| Packet xp1 = padd(x, one); |
| Packet small_mask = pcmp_eq(xp1, one); |
| Packet log1 = plog(xp1); |
| Packet inf_mask = pcmp_eq(xp1, log1); |
| Packet log_large = pmul(x, pdiv(log1, psub(xp1, one))); |
| return pselect(por(small_mask, inf_mask), x, log_large); |
| } |
| |
| /** \internal \returns exp(x)-1 computed using W. Kahan's formula. |
| See: http://www.plunk.org/~hatch/rightway.php |
| */ |
| template<typename Packet> |
| Packet generic_expm1(const Packet& x) |
| { |
| typedef typename unpacket_traits<Packet>::type ScalarType; |
| const Packet one = pset1<Packet>(ScalarType(1)); |
| const Packet neg_one = pset1<Packet>(ScalarType(-1)); |
| Packet u = pexp(x); |
| Packet one_mask = pcmp_eq(u, one); |
| Packet u_minus_one = psub(u, one); |
| Packet neg_one_mask = pcmp_eq(u_minus_one, neg_one); |
| Packet logu = plog(u); |
| // The following comparison is to catch the case where |
| // exp(x) = +inf. It is written in this way to avoid having |
| // to form the constant +inf, which depends on the packet |
| // type. |
| Packet pos_inf_mask = pcmp_eq(logu, u); |
| Packet expm1 = pmul(u_minus_one, pdiv(x, logu)); |
| expm1 = pselect(pos_inf_mask, u, expm1); |
| return pselect(one_mask, |
| x, |
| pselect(neg_one_mask, |
| neg_one, |
| expm1)); |
| } |
| |
| |
| // Exponential function. Works by writing "x = m*log(2) + r" where |
| // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then |
| // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1). |
| template <typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet pexp_float(const Packet _x) |
| { |
| const Packet cst_1 = pset1<Packet>(1.0f); |
| const Packet cst_half = pset1<Packet>(0.5f); |
| const Packet cst_exp_hi = pset1<Packet>( 88.3762626647950f); |
| const Packet cst_exp_lo = pset1<Packet>(-88.3762626647949f); |
| |
| const Packet cst_cephes_LOG2EF = pset1<Packet>(1.44269504088896341f); |
| const Packet cst_cephes_exp_p0 = pset1<Packet>(1.9875691500E-4f); |
| const Packet cst_cephes_exp_p1 = pset1<Packet>(1.3981999507E-3f); |
| const Packet cst_cephes_exp_p2 = pset1<Packet>(8.3334519073E-3f); |
| const Packet cst_cephes_exp_p3 = pset1<Packet>(4.1665795894E-2f); |
| const Packet cst_cephes_exp_p4 = pset1<Packet>(1.6666665459E-1f); |
| const Packet cst_cephes_exp_p5 = pset1<Packet>(5.0000001201E-1f); |
| |
| // Clamp x. |
| Packet x = pmax(pmin(_x, cst_exp_hi), cst_exp_lo); |
| |
| // Express exp(x) as exp(m*ln(2) + r), start by extracting |
| // m = floor(x/ln(2) + 0.5). |
| Packet m = pfloor(pmadd(x, cst_cephes_LOG2EF, cst_half)); |
| |
| // Get r = x - m*ln(2). If no FMA instructions are available, m*ln(2) is |
| // subtracted out in two parts, m*C1+m*C2 = m*ln(2), to avoid accumulating |
| // truncation errors. |
| Packet r; |
| #ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD |
| const Packet cst_nln2 = pset1<Packet>(-0.6931471805599453f); |
| r = pmadd(m, cst_nln2, x); |
| #else |
| const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693359375f); |
| const Packet cst_cephes_exp_C2 = pset1<Packet>(-2.12194440e-4f); |
| r = psub(x, pmul(m, cst_cephes_exp_C1)); |
| r = psub(r, pmul(m, cst_cephes_exp_C2)); |
| #endif |
| |
| Packet r2 = pmul(r, r); |
| |
| // TODO(gonnet): Split into odd/even polynomials and try to exploit |
| // instruction-level parallelism. |
| Packet y = cst_cephes_exp_p0; |
| y = pmadd(y, r, cst_cephes_exp_p1); |
| y = pmadd(y, r, cst_cephes_exp_p2); |
| y = pmadd(y, r, cst_cephes_exp_p3); |
| y = pmadd(y, r, cst_cephes_exp_p4); |
| y = pmadd(y, r, cst_cephes_exp_p5); |
| y = pmadd(y, r2, r); |
| y = padd(y, cst_1); |
| |
| // Return 2^m * exp(r). |
| return pmax(pldexp(y,m), _x); |
| } |
| |
| // make it the default path for scalar float |
| template<> |
| EIGEN_DEVICE_FUNC inline float pexp(const float& a) { return pexp_float(a); } |
| |
| template <typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet pexp_double(const Packet _x) |
| { |
| Packet x = _x; |
| |
| const Packet cst_1 = pset1<Packet>(1.0); |
| const Packet cst_2 = pset1<Packet>(2.0); |
| const Packet cst_half = pset1<Packet>(0.5); |
| |
| const Packet cst_exp_hi = pset1<Packet>(709.437); |
| const Packet cst_exp_lo = pset1<Packet>(-709.436139303); |
| |
| const Packet cst_cephes_LOG2EF = pset1<Packet>(1.4426950408889634073599); |
| const Packet cst_cephes_exp_p0 = pset1<Packet>(1.26177193074810590878e-4); |
| const Packet cst_cephes_exp_p1 = pset1<Packet>(3.02994407707441961300e-2); |
| const Packet cst_cephes_exp_p2 = pset1<Packet>(9.99999999999999999910e-1); |
| const Packet cst_cephes_exp_q0 = pset1<Packet>(3.00198505138664455042e-6); |
| const Packet cst_cephes_exp_q1 = pset1<Packet>(2.52448340349684104192e-3); |
| const Packet cst_cephes_exp_q2 = pset1<Packet>(2.27265548208155028766e-1); |
| const Packet cst_cephes_exp_q3 = pset1<Packet>(2.00000000000000000009e0); |
| const Packet cst_cephes_exp_C1 = pset1<Packet>(0.693145751953125); |
| const Packet cst_cephes_exp_C2 = pset1<Packet>(1.42860682030941723212e-6); |
| |
| Packet tmp, fx; |
| |
| // clamp x |
| x = pmax(pmin(x, cst_exp_hi), cst_exp_lo); |
| // Express exp(x) as exp(g + n*log(2)). |
| fx = pmadd(cst_cephes_LOG2EF, x, cst_half); |
| |
| // Get the integer modulus of log(2), i.e. the "n" described above. |
| fx = pfloor(fx); |
| |
| // Get the remainder modulo log(2), i.e. the "g" described above. Subtract |
| // n*log(2) out in two steps, i.e. n*C1 + n*C2, C1+C2=log2 to get the last |
| // digits right. |
| tmp = pmul(fx, cst_cephes_exp_C1); |
| Packet z = pmul(fx, cst_cephes_exp_C2); |
| x = psub(x, tmp); |
| x = psub(x, z); |
| |
| Packet x2 = pmul(x, x); |
| |
| // Evaluate the numerator polynomial of the rational interpolant. |
| Packet px = cst_cephes_exp_p0; |
| px = pmadd(px, x2, cst_cephes_exp_p1); |
| px = pmadd(px, x2, cst_cephes_exp_p2); |
| px = pmul(px, x); |
| |
| // Evaluate the denominator polynomial of the rational interpolant. |
| Packet qx = cst_cephes_exp_q0; |
| qx = pmadd(qx, x2, cst_cephes_exp_q1); |
| qx = pmadd(qx, x2, cst_cephes_exp_q2); |
| qx = pmadd(qx, x2, cst_cephes_exp_q3); |
| |
| // I don't really get this bit, copied from the SSE2 routines, so... |
| // TODO(gonnet): Figure out what is going on here, perhaps find a better |
| // rational interpolant? |
| x = pdiv(px, psub(qx, px)); |
| x = pmadd(cst_2, x, cst_1); |
| |
| // Construct the result 2^n * exp(g) = e * x. The max is used to catch |
| // non-finite values in the input. |
| return pmax(pldexp(x,fx), _x); |
| } |
| |
| // make it the default path for scalar double |
| template<> |
| EIGEN_DEVICE_FUNC inline double pexp(const double& a) { return pexp_double(a); } |
| |
| // The following code is inspired by the following stack-overflow answer: |
| // https://stackoverflow.com/questions/30463616/payne-hanek-algorithm-implementation-in-c/30465751#30465751 |
| // It has been largely optimized: |
| // - By-pass calls to frexp. |
| // - Aligned loads of required 96 bits of 2/pi. This is accomplished by |
| // (1) balancing the mantissa and exponent to the required bits of 2/pi are |
| // aligned on 8-bits, and (2) replicating the storage of the bits of 2/pi. |
| // - Avoid a branch in rounding and extraction of the remaining fractional part. |
| // Overall, I measured a speed up higher than x2 on x86-64. |
| inline float trig_reduce_huge (float xf, int *quadrant) |
| { |
| using Eigen::numext::int32_t; |
| using Eigen::numext::uint32_t; |
| using Eigen::numext::int64_t; |
| using Eigen::numext::uint64_t; |
| |
| const double pio2_62 = 3.4061215800865545e-19; // pi/2 * 2^-62 |
| const uint64_t zero_dot_five = uint64_t(1) << 61; // 0.5 in 2.62-bit fixed-point foramt |
| |
| // 192 bits of 2/pi for Payne-Hanek reduction |
| // Bits are introduced by packet of 8 to enable aligned reads. |
| static const uint32_t two_over_pi [] = |
| { |
| 0x00000028, 0x000028be, 0x0028be60, 0x28be60db, |
| 0xbe60db93, 0x60db9391, 0xdb939105, 0x9391054a, |
| 0x91054a7f, 0x054a7f09, 0x4a7f09d5, 0x7f09d5f4, |
| 0x09d5f47d, 0xd5f47d4d, 0xf47d4d37, 0x7d4d3770, |
| 0x4d377036, 0x377036d8, 0x7036d8a5, 0x36d8a566, |
| 0xd8a5664f, 0xa5664f10, 0x664f10e4, 0x4f10e410, |
| 0x10e41000, 0xe4100000 |
| }; |
| |
| uint32_t xi = numext::as_uint(xf); |
| // Below, -118 = -126 + 8. |
| // -126 is to get the exponent, |
| // +8 is to enable alignment of 2/pi's bits on 8 bits. |
| // This is possible because the fractional part of x as only 24 meaningful bits. |
| uint32_t e = (xi >> 23) - 118; |
| // Extract the mantissa and shift it to align it wrt the exponent |
| xi = ((xi & 0x007fffffu)| 0x00800000u) << (e & 0x7); |
| |
| uint32_t i = e >> 3; |
| uint32_t twoopi_1 = two_over_pi[i-1]; |
| uint32_t twoopi_2 = two_over_pi[i+3]; |
| uint32_t twoopi_3 = two_over_pi[i+7]; |
| |
| // Compute x * 2/pi in 2.62-bit fixed-point format. |
| uint64_t p; |
| p = uint64_t(xi) * twoopi_3; |
| p = uint64_t(xi) * twoopi_2 + (p >> 32); |
| p = (uint64_t(xi * twoopi_1) << 32) + p; |
| |
| // Round to nearest: add 0.5 and extract integral part. |
| uint64_t q = (p + zero_dot_five) >> 62; |
| *quadrant = int(q); |
| // Now it remains to compute "r = x - q*pi/2" with high accuracy, |
| // since we have p=x/(pi/2) with high accuracy, we can more efficiently compute r as: |
| // r = (p-q)*pi/2, |
| // where the product can be be carried out with sufficient accuracy using double precision. |
| p -= q<<62; |
| return float(double(int64_t(p)) * pio2_62); |
| } |
| |
| template<bool ComputeSine,typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| #if EIGEN_GNUC_AT_LEAST(4,4) && EIGEN_COMP_GNUC_STRICT |
| __attribute__((optimize("-fno-unsafe-math-optimizations"))) |
| #endif |
| Packet psincos_float(const Packet& _x) |
| { |
| // Workaround -ffast-math aggressive optimizations |
| // See bug 1674 |
| #if EIGEN_COMP_CLANG && defined(EIGEN_VECTORIZE_SSE) |
| #define EIGEN_SINCOS_DONT_OPT(X) __asm__ ("" : "+x" (X)); |
| #else |
| #define EIGEN_SINCOS_DONT_OPT(X) |
| #endif |
| |
| typedef typename unpacket_traits<Packet>::integer_packet PacketI; |
| |
| const Packet cst_2oPI = pset1<Packet>(0.636619746685028076171875f); // 2/PI |
| const Packet cst_rounding_magic = pset1<Packet>(12582912); // 2^23 for rounding |
| const PacketI csti_1 = pset1<PacketI>(1); |
| const Packet cst_sign_mask = pset1frombits<Packet>(0x80000000u); |
| |
| Packet x = pabs(_x); |
| |
| // Scale x by 2/Pi to find x's octant. |
| Packet y = pmul(x, cst_2oPI); |
| |
| // Rounding trick: |
| Packet y_round = padd(y, cst_rounding_magic); |
| EIGEN_SINCOS_DONT_OPT(y_round) |
| PacketI y_int = preinterpret<PacketI>(y_round); // last 23 digits represent integer (if abs(x)<2^24) |
| y = psub(y_round, cst_rounding_magic); // nearest integer to x*4/pi |
| |
| // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4 |
| // using "Extended precision modular arithmetic" |
| #if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) |
| // This version requires true FMA for high accuracy |
| // It provides a max error of 1ULP up to (with absolute_error < 5.9605e-08): |
| const float huge_th = ComputeSine ? 117435.992f : 71476.0625f; |
| x = pmadd(y, pset1<Packet>(-1.57079601287841796875f), x); |
| x = pmadd(y, pset1<Packet>(-3.1391647326017846353352069854736328125e-07f), x); |
| x = pmadd(y, pset1<Packet>(-5.390302529957764765544681040410068817436695098876953125e-15f), x); |
| #else |
| // Without true FMA, the previous set of coefficients maintain 1ULP accuracy |
| // up to x<15.7 (for sin), but accuracy is immediately lost for x>15.7. |
| // We thus use one more iteration to maintain 2ULPs up to reasonably large inputs. |
| |
| // The following set of coefficients maintain 1ULP up to 9.43 and 14.16 for sin and cos respectively. |
| // and 2 ULP up to: |
| const float huge_th = ComputeSine ? 25966.f : 18838.f; |
| x = pmadd(y, pset1<Packet>(-1.5703125), x); // = 0xbfc90000 |
| EIGEN_SINCOS_DONT_OPT(x) |
| x = pmadd(y, pset1<Packet>(-0.000483989715576171875), x); // = 0xb9fdc000 |
| EIGEN_SINCOS_DONT_OPT(x) |
| x = pmadd(y, pset1<Packet>(1.62865035235881805419921875e-07), x); // = 0x342ee000 |
| x = pmadd(y, pset1<Packet>(5.5644315544167710640977020375430583953857421875e-11), x); // = 0x2e74b9ee |
| |
| // For the record, the following set of coefficients maintain 2ULP up |
| // to a slightly larger range: |
| // const float huge_th = ComputeSine ? 51981.f : 39086.125f; |
| // but it slightly fails to maintain 1ULP for two values of sin below pi. |
| // x = pmadd(y, pset1<Packet>(-3.140625/2.), x); |
| // x = pmadd(y, pset1<Packet>(-0.00048351287841796875), x); |
| // x = pmadd(y, pset1<Packet>(-3.13855707645416259765625e-07), x); |
| // x = pmadd(y, pset1<Packet>(-6.0771006282767103812147979624569416046142578125e-11), x); |
| |
| // For the record, with only 3 iterations it is possible to maintain |
| // 1 ULP up to 3PI (maybe more) and 2ULP up to 255. |
| // The coefficients are: 0xbfc90f80, 0xb7354480, 0x2e74b9ee |
| #endif |
| |
| if(predux_any(pcmp_le(pset1<Packet>(huge_th),pabs(_x)))) |
| { |
| const int PacketSize = unpacket_traits<Packet>::size; |
| EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float vals[PacketSize]; |
| EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) float x_cpy[PacketSize]; |
| EIGEN_ALIGN_TO_BOUNDARY(sizeof(Packet)) int y_int2[PacketSize]; |
| pstoreu(vals, pabs(_x)); |
| pstoreu(x_cpy, x); |
| pstoreu(y_int2, y_int); |
| for(int k=0; k<PacketSize;++k) |
| { |
| float val = vals[k]; |
| if(val>=huge_th && (numext::isfinite)(val)) |
| x_cpy[k] = trig_reduce_huge(val,&y_int2[k]); |
| } |
| x = ploadu<Packet>(x_cpy); |
| y_int = ploadu<PacketI>(y_int2); |
| } |
| |
| // Compute the sign to apply to the polynomial. |
| // sin: sign = second_bit(y_int) xor signbit(_x) |
| // cos: sign = second_bit(y_int+1) |
| Packet sign_bit = ComputeSine ? pxor(_x, preinterpret<Packet>(plogical_shift_left<30>(y_int))) |
| : preinterpret<Packet>(plogical_shift_left<30>(padd(y_int,csti_1))); |
| sign_bit = pand(sign_bit, cst_sign_mask); // clear all but left most bit |
| |
| // Get the polynomial selection mask from the second bit of y_int |
| // We'll calculate both (sin and cos) polynomials and then select from the two. |
| Packet poly_mask = preinterpret<Packet>(pcmp_eq(pand(y_int, csti_1), pzero(y_int))); |
| |
| Packet x2 = pmul(x,x); |
| |
| // Evaluate the cos(x) polynomial. (-Pi/4 <= x <= Pi/4) |
| Packet y1 = pset1<Packet>(2.4372266125283204019069671630859375e-05f); |
| y1 = pmadd(y1, x2, pset1<Packet>(-0.00138865201734006404876708984375f )); |
| y1 = pmadd(y1, x2, pset1<Packet>(0.041666619479656219482421875f )); |
| y1 = pmadd(y1, x2, pset1<Packet>(-0.5f)); |
| y1 = pmadd(y1, x2, pset1<Packet>(1.f)); |
| |
| // Evaluate the sin(x) polynomial. (Pi/4 <= x <= Pi/4) |
| // octave/matlab code to compute those coefficients: |
| // x = (0:0.0001:pi/4)'; |
| // A = [x.^3 x.^5 x.^7]; |
| // w = ((1.-(x/(pi/4)).^2).^5)*2000+1; # weights trading relative accuracy |
| // c = (A'*diag(w)*A)\(A'*diag(w)*(sin(x)-x)); # weighted LS, linear coeff forced to 1 |
| // printf('%.64f\n %.64f\n%.64f\n', c(3), c(2), c(1)) |
| // |
| Packet y2 = pset1<Packet>(-0.0001959234114083702898469196984621021329076029360294342041015625f); |
| y2 = pmadd(y2, x2, pset1<Packet>( 0.0083326873655616851693794799871284340042620897293090820312500000f)); |
| y2 = pmadd(y2, x2, pset1<Packet>(-0.1666666203982298255503735617821803316473960876464843750000000000f)); |
| y2 = pmul(y2, x2); |
| y2 = pmadd(y2, x, x); |
| |
| // Select the correct result from the two polynomials. |
| y = ComputeSine ? pselect(poly_mask,y2,y1) |
| : pselect(poly_mask,y1,y2); |
| |
| // Update the sign and filter huge inputs |
| return pxor(y, sign_bit); |
| |
| #undef EIGEN_SINCOS_DONT_OPT |
| } |
| |
| template<typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet psin_float(const Packet& x) |
| { |
| return psincos_float<true>(x); |
| } |
| |
| template<typename Packet> |
| EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS |
| EIGEN_UNUSED |
| Packet pcos_float(const Packet& x) |
| { |
| return psincos_float<false>(x); |
| } |
| |
| /* polevl (modified for Eigen) |
| * |
| * Evaluate polynomial |
| * |
| * |
| * |
| * SYNOPSIS: |
| * |
| * int N; |
| * Scalar x, y, coef[N+1]; |
| * |
| * y = polevl<decltype(x), N>( x, coef); |
| * |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Evaluates polynomial of degree N: |
| * |
| * 2 N |
| * y = C + C x + C x +...+ C x |
| * 0 1 2 N |
| * |
| * Coefficients are stored in reverse order: |
| * |
| * coef[0] = C , ..., coef[N] = C . |
| * N 0 |
| * |
| * The function p1evl() assumes that coef[N] = 1.0 and is |
| * omitted from the array. Its calling arguments are |
| * otherwise the same as polevl(). |
| * |
| * |
| * The Eigen implementation is templatized. For best speed, store |
| * coef as a const array (constexpr), e.g. |
| * |
| * const double coef[] = {1.0, 2.0, 3.0, ...}; |
| * |
| */ |
| template <typename Packet, int N> |
| struct ppolevl { |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) { |
| EIGEN_STATIC_ASSERT((N > 0), YOU_MADE_A_PROGRAMMING_MISTAKE); |
| return pmadd(ppolevl<Packet, N-1>::run(x, coeff), x, pset1<Packet>(coeff[N])); |
| } |
| }; |
| |
| template <typename Packet> |
| struct ppolevl<Packet, 0> { |
| static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet run(const Packet& x, const typename unpacket_traits<Packet>::type coeff[]) { |
| EIGEN_UNUSED_VARIABLE(x); |
| return pset1<Packet>(coeff[0]); |
| } |
| }; |
| |
| /* chbevl (modified for Eigen) |
| * |
| * Evaluate Chebyshev series |
| * |
| * |
| * |
| * SYNOPSIS: |
| * |
| * int N; |
| * Scalar x, y, coef[N], chebevl(); |
| * |
| * y = chbevl( x, coef, N ); |
| * |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Evaluates the series |
| * |
| * N-1 |
| * - ' |
| * y = > coef[i] T (x/2) |
| * - i |
| * i=0 |
| * |
| * of Chebyshev polynomials Ti at argument x/2. |
| * |
| * Coefficients are stored in reverse order, i.e. the zero |
| * order term is last in the array. Note N is the number of |
| * coefficients, not the order. |
| * |
| * If coefficients are for the interval a to b, x must |
| * have been transformed to x -> 2(2x - b - a)/(b-a) before |
| * entering the routine. This maps x from (a, b) to (-1, 1), |
| * over which the Chebyshev polynomials are defined. |
| * |
| * If the coefficients are for the inverted interval, in |
| * which (a, b) is mapped to (1/b, 1/a), the transformation |
| * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity, |
| * this becomes x -> 4a/x - 1. |
| * |
| * |
| * |
| * SPEED: |
| * |
| * Taking advantage of the recurrence properties of the |
| * Chebyshev polynomials, the routine requires one more |
| * addition per loop than evaluating a nested polynomial of |
| * the same degree. |
| * |
| */ |
| |
| template <typename Packet, int N> |
| struct pchebevl { |
| EIGEN_DEVICE_FUNC |
| static EIGEN_STRONG_INLINE Packet run(Packet x, const typename unpacket_traits<Packet>::type coef[]) { |
| typedef typename unpacket_traits<Packet>::type Scalar; |
| Packet b0 = pset1<Packet>(coef[0]); |
| Packet b1 = pset1<Packet>(static_cast<Scalar>(0.f)); |
| Packet b2; |
| |
| for (int i = 1; i < N; i++) { |
| b2 = b1; |
| b1 = b0; |
| b0 = psub(pmadd(x, b1, pset1<Packet>(coef[i])), b2); |
| } |
| |
| return pmul(pset1<Packet>(static_cast<Scalar>(0.5f)), psub(b0, b2)); |
| } |
| }; |
| |
| } // end namespace internal |
| } // end namespace Eigen |
| |
| #endif // EIGEN_ARCH_GENERIC_PACKET_MATH_FUNCTIONS_H |