| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/FFT.h> |
| |
| |
| using namespace std; |
| |
| float norm(float x) {return x*x;} |
| double norm(double x) {return x*x;} |
| long double norm(long double x) {return x*x;} |
| |
| template < typename T> |
| complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); } |
| |
| complex<long double> promote(float x) { return complex<long double>( x); } |
| complex<long double> promote(double x) { return complex<long double>( x); } |
| complex<long double> promote(long double x) { return complex<long double>( x); } |
| |
| |
| template <typename T1,typename T2> |
| long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf) |
| { |
| long double totalpower=0; |
| long double difpower=0; |
| cerr <<"idx\ttruth\t\tvalue\n"; |
| for (size_t k0=0;k0<fftbuf.size();++k0) { |
| complex<long double> acc = 0; |
| long double phinc = -2.*k0* M_PIl / timebuf.size(); |
| for (size_t k1=0;k1<timebuf.size();++k1) { |
| acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) ); |
| } |
| totalpower += norm(acc); |
| complex<long double> x = promote(fftbuf[k0]); |
| complex<long double> dif = acc - x; |
| difpower += norm(dif); |
| cerr << k0 << "\t" << acc << "\t" << x << endl; |
| } |
| cerr << "rmse:" << sqrt(difpower/totalpower) << endl; |
| return sqrt(difpower/totalpower); |
| } |
| |
| template <typename T1,typename T2> |
| long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2) |
| { |
| long double totalpower=0; |
| long double difpower=0; |
| size_t n = min( buf1.size(),buf2.size() ); |
| for (size_t k=0;k<n;++k) { |
| totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.; |
| difpower += norm(buf1[k] - buf2[k]); |
| } |
| return sqrt(difpower/totalpower); |
| } |
| |
| template <class T> |
| void test_scalar(int nfft) |
| { |
| typedef typename Eigen::FFT<T>::Complex Complex; |
| typedef typename Eigen::FFT<T>::Scalar Scalar; |
| |
| FFT<T> fft; |
| vector<Scalar> inbuf(nfft); |
| vector<Complex> outbuf; |
| for (int k=0;k<nfft;++k) |
| inbuf[k]= (T)(rand()/(double)RAND_MAX - .5); |
| fft.fwd( outbuf,inbuf); |
| VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check |
| |
| vector<Scalar> buf3; |
| fft.inv( buf3 , outbuf); |
| VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check |
| } |
| |
| template <class T> |
| void test_complex(int nfft) |
| { |
| typedef typename Eigen::FFT<T>::Complex Complex; |
| |
| FFT<T> fft; |
| |
| vector<Complex> inbuf(nfft); |
| vector<Complex> outbuf; |
| vector<Complex> buf3; |
| for (int k=0;k<nfft;++k) |
| inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) ); |
| fft.fwd( outbuf , inbuf); |
| |
| VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check |
| |
| fft.inv( buf3 , outbuf); |
| |
| VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check |
| } |
| |
| void test_FFT() |
| { |
| #if 1 |
| CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) ); |
| CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) ); |
| CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) ); |
| CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) ); |
| CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) ); |
| CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) ); |
| CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) ); |
| #endif |
| |
| #if 1 |
| CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) ); |
| CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) ); |
| CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) ); |
| CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) ); |
| #endif |
| } |