| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_SELFADJOINTMATRIX_H | 
 | #define EIGEN_SELFADJOINTMATRIX_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | /** \class SelfAdjointView | 
 |   * \ingroup Core_Module | 
 |   * | 
 |   * | 
 |   * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix | 
 |   * | 
 |   * \param MatrixType the type of the dense matrix storing the coefficients | 
 |   * \param TriangularPart can be either \c #Lower or \c #Upper | 
 |   * | 
 |   * This class is an expression of a sefladjoint matrix from a triangular part of a matrix | 
 |   * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() | 
 |   * and most of the time this is the only way that it is used. | 
 |   * | 
 |   * \sa class TriangularBase, MatrixBase::selfadjointView() | 
 |   */ | 
 |  | 
 | namespace internal { | 
 | template<typename MatrixType, unsigned int UpLo> | 
 | struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType> | 
 | { | 
 |   typedef typename ref_selector<MatrixType>::non_const_type MatrixTypeNested; | 
 |   typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned; | 
 |   typedef MatrixType ExpressionType; | 
 |   typedef typename MatrixType::PlainObject FullMatrixType; | 
 |   enum { | 
 |     Mode = UpLo | SelfAdjoint, | 
 |     FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0, | 
 |     Flags =  MatrixTypeNestedCleaned::Flags & (HereditaryBits|FlagsLvalueBit) | 
 |            & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved | 
 |   }; | 
 | }; | 
 | } | 
 |  | 
 |  | 
 | template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView | 
 |   : public TriangularBase<SelfAdjointView<_MatrixType, UpLo> > | 
 | { | 
 |   public: | 
 |  | 
 |     typedef _MatrixType MatrixType; | 
 |     typedef TriangularBase<SelfAdjointView> Base; | 
 |     typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested; | 
 |     typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned; | 
 |     typedef MatrixTypeNestedCleaned NestedExpression; | 
 |  | 
 |     /** \brief The type of coefficients in this matrix */ | 
 |     typedef typename internal::traits<SelfAdjointView>::Scalar Scalar;  | 
 |     typedef typename MatrixType::StorageIndex StorageIndex; | 
 |     typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType; | 
 |     typedef SelfAdjointView<typename internal::add_const<MatrixType>::type, UpLo> ConstSelfAdjointView; | 
 |  | 
 |     enum { | 
 |       Mode = internal::traits<SelfAdjointView>::Mode, | 
 |       Flags = internal::traits<SelfAdjointView>::Flags, | 
 |       TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0) | 
 |     }; | 
 |     typedef typename MatrixType::PlainObject PlainObject; | 
 |  | 
 |     EIGEN_DEVICE_FUNC | 
 |     explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix) | 
 |     { | 
 |       EIGEN_STATIC_ASSERT(UpLo==Lower || UpLo==Upper,SELFADJOINTVIEW_ACCEPTS_UPPER_AND_LOWER_MODE_ONLY); | 
 |     } | 
 |  | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline Index rows() const { return m_matrix.rows(); } | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline Index cols() const { return m_matrix.cols(); } | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline Index outerStride() const { return m_matrix.outerStride(); } | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline Index innerStride() const { return m_matrix.innerStride(); } | 
 |  | 
 |     /** \sa MatrixBase::coeff() | 
 |       * \warning the coordinates must fit into the referenced triangular part | 
 |       */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline Scalar coeff(Index row, Index col) const | 
 |     { | 
 |       Base::check_coordinates_internal(row, col); | 
 |       return m_matrix.coeff(row, col); | 
 |     } | 
 |  | 
 |     /** \sa MatrixBase::coeffRef() | 
 |       * \warning the coordinates must fit into the referenced triangular part | 
 |       */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline Scalar& coeffRef(Index row, Index col) | 
 |     { | 
 |       EIGEN_STATIC_ASSERT_LVALUE(SelfAdjointView); | 
 |       Base::check_coordinates_internal(row, col); | 
 |       return m_matrix.coeffRef(row, col); | 
 |     } | 
 |  | 
 |     /** \internal */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     const MatrixTypeNestedCleaned& _expression() const { return m_matrix; } | 
 |  | 
 |     EIGEN_DEVICE_FUNC | 
 |     const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; } | 
 |     EIGEN_DEVICE_FUNC | 
 |     MatrixTypeNestedCleaned& nestedExpression() { return m_matrix; } | 
 |  | 
 |     /** Efficient triangular matrix times vector/matrix product */ | 
 |     template<typename OtherDerived> | 
 |     EIGEN_DEVICE_FUNC | 
 |     const Product<SelfAdjointView,OtherDerived> | 
 |     operator*(const MatrixBase<OtherDerived>& rhs) const | 
 |     { | 
 |       return Product<SelfAdjointView,OtherDerived>(*this, rhs.derived()); | 
 |     } | 
 |  | 
 |     /** Efficient vector/matrix times triangular matrix product */ | 
 |     template<typename OtherDerived> friend | 
 |     EIGEN_DEVICE_FUNC | 
 |     const Product<OtherDerived,SelfAdjointView> | 
 |     operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs) | 
 |     { | 
 |       return Product<OtherDerived,SelfAdjointView>(lhs.derived(),rhs); | 
 |     } | 
 |      | 
 |     friend EIGEN_DEVICE_FUNC | 
 |     const SelfAdjointView<const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,MatrixType,product),UpLo> | 
 |     operator*(const Scalar& s, const SelfAdjointView& mat) | 
 |     { | 
 |       return (s*mat.nestedExpression()).template selfadjointView<UpLo>(); | 
 |     } | 
 |  | 
 |     /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this: | 
 |       * \f$ this = this + \alpha u v^* + conj(\alpha) v u^* \f$ | 
 |       * \returns a reference to \c *this | 
 |       * | 
 |       * The vectors \a u and \c v \b must be column vectors, however they can be | 
 |       * a adjoint expression without any overhead. Only the meaningful triangular | 
 |       * part of the matrix is updated, the rest is left unchanged. | 
 |       * | 
 |       * \sa rankUpdate(const MatrixBase<DerivedU>&, Scalar) | 
 |       */ | 
 |     template<typename DerivedU, typename DerivedV> | 
 |     EIGEN_DEVICE_FUNC | 
 |     SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const MatrixBase<DerivedV>& v, const Scalar& alpha = Scalar(1)); | 
 |  | 
 |     /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: | 
 |       * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. | 
 |       * | 
 |       * \returns a reference to \c *this | 
 |       * | 
 |       * Note that to perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply | 
 |       * call this function with u.adjoint(). | 
 |       * | 
 |       * \sa rankUpdate(const MatrixBase<DerivedU>&, const MatrixBase<DerivedV>&, Scalar) | 
 |       */ | 
 |     template<typename DerivedU> | 
 |     EIGEN_DEVICE_FUNC | 
 |     SelfAdjointView& rankUpdate(const MatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1)); | 
 |  | 
 |     /** \returns an expression of a triangular view extracted from the current selfadjoint view of a given triangular part | 
 |       * | 
 |       * The parameter \a TriMode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, | 
 |       * \c #Lower, \c #StrictlyLower, \c #UnitLower. | 
 |       * | 
 |       * If \c TriMode references the same triangular part than \c *this, then this method simply return a \c TriangularView of the nested expression, | 
 |       * otherwise, the nested expression is first transposed, thus returning a \c TriangularView<Transpose<MatrixType>> object. | 
 |       * | 
 |       * \sa MatrixBase::triangularView(), class TriangularView | 
 |       */ | 
 |     template<unsigned int TriMode> | 
 |     EIGEN_DEVICE_FUNC | 
 |     typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), | 
 |                                    TriangularView<MatrixType,TriMode>, | 
 |                                    TriangularView<typename MatrixType::AdjointReturnType,TriMode> >::type | 
 |     triangularView() const | 
 |     { | 
 |       typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::ConstTransposeReturnType>::type tmp1(m_matrix); | 
 |       typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), MatrixType&, typename MatrixType::AdjointReturnType>::type tmp2(tmp1); | 
 |       return typename internal::conditional<(TriMode&(Upper|Lower))==(UpLo&(Upper|Lower)), | 
 |                                    TriangularView<MatrixType,TriMode>, | 
 |                                    TriangularView<typename MatrixType::AdjointReturnType,TriMode> >::type(tmp2); | 
 |     } | 
 |  | 
 |     typedef SelfAdjointView<const MatrixConjugateReturnType,UpLo> ConjugateReturnType; | 
 |     /** \sa MatrixBase::conjugate() const */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline const ConjugateReturnType conjugate() const | 
 |     { return ConjugateReturnType(m_matrix.conjugate()); } | 
 |  | 
 |     /** \returns an expression of the complex conjugate of \c *this if Cond==true, | 
 |      *           returns \c *this otherwise. | 
 |      */ | 
 |     template<bool Cond> | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline typename internal::conditional<Cond,ConjugateReturnType,ConstSelfAdjointView>::type | 
 |     conjugateIf() const | 
 |     { | 
 |       typedef typename internal::conditional<Cond,ConjugateReturnType,ConstSelfAdjointView>::type ReturnType; | 
 |       return ReturnType(m_matrix.template conjugateIf<Cond>()); | 
 |     } | 
 |  | 
 |     typedef SelfAdjointView<const typename MatrixType::AdjointReturnType,TransposeMode> AdjointReturnType; | 
 |     /** \sa MatrixBase::adjoint() const */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline const AdjointReturnType adjoint() const | 
 |     { return AdjointReturnType(m_matrix.adjoint()); } | 
 |  | 
 |     typedef SelfAdjointView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType; | 
 |      /** \sa MatrixBase::transpose() */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline TransposeReturnType transpose() | 
 |     { | 
 |       EIGEN_STATIC_ASSERT_LVALUE(MatrixType) | 
 |       typename MatrixType::TransposeReturnType tmp(m_matrix); | 
 |       return TransposeReturnType(tmp); | 
 |     } | 
 |  | 
 |     typedef SelfAdjointView<const typename MatrixType::ConstTransposeReturnType,TransposeMode> ConstTransposeReturnType; | 
 |     /** \sa MatrixBase::transpose() const */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     inline const ConstTransposeReturnType transpose() const | 
 |     { | 
 |       return ConstTransposeReturnType(m_matrix.transpose()); | 
 |     } | 
 |  | 
 |     /** \returns a const expression of the main diagonal of the matrix \c *this | 
 |       * | 
 |       * This method simply returns the diagonal of the nested expression, thus by-passing the SelfAdjointView decorator. | 
 |       * | 
 |       * \sa MatrixBase::diagonal(), class Diagonal */ | 
 |     EIGEN_DEVICE_FUNC | 
 |     typename MatrixType::ConstDiagonalReturnType diagonal() const | 
 |     { | 
 |       return typename MatrixType::ConstDiagonalReturnType(m_matrix); | 
 |     } | 
 |  | 
 | /////////// Cholesky module /////////// | 
 |  | 
 |     const LLT<PlainObject, UpLo> llt() const; | 
 |     const LDLT<PlainObject, UpLo> ldlt() const; | 
 |  | 
 | /////////// Eigenvalue module /////////// | 
 |  | 
 |     /** Real part of #Scalar */ | 
 |     typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |     /** Return type of eigenvalues() */ | 
 |     typedef Matrix<RealScalar, internal::traits<MatrixType>::ColsAtCompileTime, 1> EigenvaluesReturnType; | 
 |  | 
 |     EIGEN_DEVICE_FUNC | 
 |     EigenvaluesReturnType eigenvalues() const; | 
 |     EIGEN_DEVICE_FUNC | 
 |     RealScalar operatorNorm() const; | 
 |  | 
 |   protected: | 
 |     MatrixTypeNested m_matrix; | 
 | }; | 
 |  | 
 |  | 
 | // template<typename OtherDerived, typename MatrixType, unsigned int UpLo> | 
 | // internal::selfadjoint_matrix_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> > | 
 | // operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView<MatrixType,UpLo>& rhs) | 
 | // { | 
 | //   return internal::matrix_selfadjoint_product_returntype<OtherDerived,SelfAdjointView<MatrixType,UpLo> >(lhs.derived(),rhs); | 
 | // } | 
 |  | 
 | // selfadjoint to dense matrix | 
 |  | 
 | namespace internal { | 
 |  | 
 | // TODO currently a selfadjoint expression has the form SelfAdjointView<.,.> | 
 | //      in the future selfadjoint-ness should be defined by the expression traits | 
 | //      such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work) | 
 | template<typename MatrixType, unsigned int Mode> | 
 | struct evaluator_traits<SelfAdjointView<MatrixType,Mode> > | 
 | { | 
 |   typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind; | 
 |   typedef SelfAdjointShape Shape; | 
 | }; | 
 |  | 
 | template<int UpLo, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version> | 
 | class triangular_dense_assignment_kernel<UpLo,SelfAdjoint,SetOpposite,DstEvaluatorTypeT,SrcEvaluatorTypeT,Functor,Version> | 
 |   : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> | 
 | { | 
 | protected: | 
 |   typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base; | 
 |   typedef typename Base::DstXprType DstXprType; | 
 |   typedef typename Base::SrcXprType SrcXprType; | 
 |   using Base::m_dst; | 
 |   using Base::m_src; | 
 |   using Base::m_functor; | 
 | public: | 
 |    | 
 |   typedef typename Base::DstEvaluatorType DstEvaluatorType; | 
 |   typedef typename Base::SrcEvaluatorType SrcEvaluatorType; | 
 |   typedef typename Base::Scalar Scalar; | 
 |   typedef typename Base::AssignmentTraits AssignmentTraits; | 
 |    | 
 |    | 
 |   EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) | 
 |     : Base(dst, src, func, dstExpr) | 
 |   {} | 
 |    | 
 |   EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col) | 
 |   { | 
 |     eigen_internal_assert(row!=col); | 
 |     Scalar tmp = m_src.coeff(row,col); | 
 |     m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp); | 
 |     m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp)); | 
 |   } | 
 |    | 
 |   EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id) | 
 |   { | 
 |     Base::assignCoeff(id,id); | 
 |   } | 
 |    | 
 |   EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index, Index) | 
 |   { eigen_internal_assert(false && "should never be called"); } | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | /*************************************************************************** | 
 | * Implementation of MatrixBase methods | 
 | ***************************************************************************/ | 
 |  | 
 | /** This is the const version of MatrixBase::selfadjointView() */ | 
 | template<typename Derived> | 
 | template<unsigned int UpLo> | 
 | EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type | 
 | MatrixBase<Derived>::selfadjointView() const | 
 | { | 
 |   return typename ConstSelfAdjointViewReturnType<UpLo>::Type(derived()); | 
 | } | 
 |  | 
 | /** \returns an expression of a symmetric/self-adjoint view extracted from the upper or lower triangular part of the current matrix | 
 |   * | 
 |   * The parameter \a UpLo can be either \c #Upper or \c #Lower | 
 |   * | 
 |   * Example: \include MatrixBase_selfadjointView.cpp | 
 |   * Output: \verbinclude MatrixBase_selfadjointView.out | 
 |   * | 
 |   * \sa class SelfAdjointView | 
 |   */ | 
 | template<typename Derived> | 
 | template<unsigned int UpLo> | 
 | EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type | 
 | MatrixBase<Derived>::selfadjointView() | 
 | { | 
 |   return typename SelfAdjointViewReturnType<UpLo>::Type(derived()); | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_SELFADJOINTMATRIX_H |