|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_UMEYAMA_H | 
|  | #define EIGEN_UMEYAMA_H | 
|  |  | 
|  | // This file requires the user to include | 
|  | // * Eigen/Core | 
|  | // * Eigen/LU | 
|  | // * Eigen/SVD | 
|  | // * Eigen/Array | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  |  | 
|  | // These helpers are required since it allows to use mixed types as parameters | 
|  | // for the Umeyama. The problem with mixed parameters is that the return type | 
|  | // cannot trivially be deduced when float and double types are mixed. | 
|  | namespace internal { | 
|  |  | 
|  | // Compile time return type deduction for different MatrixBase types. | 
|  | // Different means here different alignment and parameters but the same underlying | 
|  | // real scalar type. | 
|  | template<typename MatrixType, typename OtherMatrixType> | 
|  | struct umeyama_transform_matrix_type | 
|  | { | 
|  | enum { | 
|  | MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime), | 
|  |  | 
|  | // When possible we want to choose some small fixed size value since the result | 
|  | // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want. | 
|  | HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1 | 
|  | }; | 
|  |  | 
|  | typedef Matrix<typename traits<MatrixType>::Scalar, | 
|  | HomogeneousDimension, | 
|  | HomogeneousDimension, | 
|  | AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor), | 
|  | HomogeneousDimension, | 
|  | HomogeneousDimension | 
|  | > type; | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \brief Returns the transformation between two point sets. | 
|  | * | 
|  | * The algorithm is based on: | 
|  | * "Least-squares estimation of transformation parameters between two point patterns", | 
|  | * Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573 | 
|  | * | 
|  | * It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that | 
|  | * \f{align*} | 
|  | *   \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 | 
|  | * \f} | 
|  | * is minimized. | 
|  | * | 
|  | * The algorithm is based on the analysis of the covariance matrix | 
|  | * \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$ | 
|  | * of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where | 
|  | * \f$d\f$ is corresponding to the dimension (which is typically small). | 
|  | * The analysis is involving the SVD having a complexity of \f$O(d^3)\f$ | 
|  | * though the actual computational effort lies in the covariance | 
|  | * matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when | 
|  | * the input point sets have dimension \f$d \times m\f$. | 
|  | * | 
|  | * Currently the method is working only for floating point matrices. | 
|  | * | 
|  | * \todo Should the return type of umeyama() become a Transform? | 
|  | * | 
|  | * \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$. | 
|  | * \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$. | 
|  | * \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed. | 
|  | * \return The homogeneous transformation | 
|  | * \f{align*} | 
|  | *   T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} | 
|  | * \f} | 
|  | * minimizing the residual above. This transformation is always returned as an | 
|  | * Eigen::Matrix. | 
|  | */ | 
|  | template <typename Derived, typename OtherDerived> | 
|  | typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type | 
|  | umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true) | 
|  | { | 
|  | typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType; | 
|  | typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) | 
|  | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|  |  | 
|  | enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) }; | 
|  |  | 
|  | typedef Matrix<Scalar, Dimension, 1> VectorType; | 
|  | typedef Matrix<Scalar, Dimension, Dimension> MatrixType; | 
|  | typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType; | 
|  |  | 
|  | const Index m = src.rows(); // dimension | 
|  | const Index n = src.cols(); // number of measurements | 
|  |  | 
|  | // required for demeaning ... | 
|  | const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n); | 
|  |  | 
|  | // computation of mean | 
|  | const VectorType src_mean = src.rowwise().sum() * one_over_n; | 
|  | const VectorType dst_mean = dst.rowwise().sum() * one_over_n; | 
|  |  | 
|  | // demeaning of src and dst points | 
|  | const RowMajorMatrixType src_demean = src.colwise() - src_mean; | 
|  | const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean; | 
|  |  | 
|  | // Eq. (36)-(37) | 
|  | const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n; | 
|  |  | 
|  | // Eq. (38) | 
|  | const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose(); | 
|  |  | 
|  | JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV); | 
|  |  | 
|  | // Initialize the resulting transformation with an identity matrix... | 
|  | TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1); | 
|  |  | 
|  | // Eq. (39) | 
|  | VectorType S = VectorType::Ones(m); | 
|  |  | 
|  | if  ( svd.matrixU().determinant() * svd.matrixV().determinant() < 0 ) | 
|  | S(m-1) = -1; | 
|  |  | 
|  | // Eq. (40) and (43) | 
|  | Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); | 
|  |  | 
|  | if (with_scaling) | 
|  | { | 
|  | // Eq. (42) | 
|  | const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S); | 
|  |  | 
|  | // Eq. (41) | 
|  | Rt.col(m).head(m) = dst_mean; | 
|  | Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean; | 
|  | Rt.block(0,0,m,m) *= c; | 
|  | } | 
|  | else | 
|  | { | 
|  | Rt.col(m).head(m) = dst_mean; | 
|  | Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean; | 
|  | } | 
|  |  | 
|  | return Rt; | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_UMEYAMA_H |