|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_BASIC_PRECONDITIONERS_H | 
|  | #define EIGEN_BASIC_PRECONDITIONERS_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \ingroup IterativeLinearSolvers_Module | 
|  | * \brief A preconditioner based on the digonal entries | 
|  | * | 
|  | * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. | 
|  | * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: | 
|  | \code | 
|  | A.diagonal().asDiagonal() . x = b | 
|  | \endcode | 
|  | * | 
|  | * \tparam _Scalar the type of the scalar. | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * This preconditioner is suitable for both selfadjoint and general problems. | 
|  | * The diagonal entries are pre-inverted and stored into a dense vector. | 
|  | * | 
|  | * \note A variant that has yet to be implemented would attempt to preserve the norm of each column. | 
|  | * | 
|  | * \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient | 
|  | */ | 
|  | template <typename _Scalar> | 
|  | class DiagonalPreconditioner | 
|  | { | 
|  | typedef _Scalar Scalar; | 
|  | typedef Matrix<Scalar,Dynamic,1> Vector; | 
|  | public: | 
|  | typedef typename Vector::StorageIndex StorageIndex; | 
|  | enum { | 
|  | ColsAtCompileTime = Dynamic, | 
|  | MaxColsAtCompileTime = Dynamic | 
|  | }; | 
|  |  | 
|  | DiagonalPreconditioner() : m_isInitialized(false) {} | 
|  |  | 
|  | template<typename MatType> | 
|  | explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols()) | 
|  | { | 
|  | compute(mat); | 
|  | } | 
|  |  | 
|  | Index rows() const { return m_invdiag.size(); } | 
|  | Index cols() const { return m_invdiag.size(); } | 
|  |  | 
|  | template<typename MatType> | 
|  | DiagonalPreconditioner& analyzePattern(const MatType& ) | 
|  | { | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename MatType> | 
|  | DiagonalPreconditioner& factorize(const MatType& mat) | 
|  | { | 
|  | m_invdiag.resize(mat.cols()); | 
|  | for(int j=0; j<mat.outerSize(); ++j) | 
|  | { | 
|  | typename MatType::InnerIterator it(mat,j); | 
|  | while(it && it.index()!=j) ++it; | 
|  | if(it && it.index()==j && it.value()!=Scalar(0)) | 
|  | m_invdiag(j) = Scalar(1)/it.value(); | 
|  | else | 
|  | m_invdiag(j) = Scalar(1); | 
|  | } | 
|  | m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename MatType> | 
|  | DiagonalPreconditioner& compute(const MatType& mat) | 
|  | { | 
|  | return factorize(mat); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename Rhs, typename Dest> | 
|  | void _solve_impl(const Rhs& b, Dest& x) const | 
|  | { | 
|  | x = m_invdiag.array() * b.array() ; | 
|  | } | 
|  |  | 
|  | template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs> | 
|  | solve(const MatrixBase<Rhs>& b) const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized."); | 
|  | eigen_assert(m_invdiag.size()==b.rows() | 
|  | && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b"); | 
|  | return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived()); | 
|  | } | 
|  |  | 
|  | ComputationInfo info() { return Success; } | 
|  |  | 
|  | protected: | 
|  | Vector m_invdiag; | 
|  | bool m_isInitialized; | 
|  | }; | 
|  |  | 
|  | /** \ingroup IterativeLinearSolvers_Module | 
|  | * \brief Jacobi preconditioner for LeastSquaresConjugateGradient | 
|  | * | 
|  | * This class allows to approximately solve for A' A x  = A' b problems assuming A' A is a diagonal matrix. | 
|  | * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: | 
|  | \code | 
|  | (A.adjoint() * A).diagonal().asDiagonal() * x = b | 
|  | \endcode | 
|  | * | 
|  | * \tparam _Scalar the type of the scalar. | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * The diagonal entries are pre-inverted and stored into a dense vector. | 
|  | * | 
|  | * \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner | 
|  | */ | 
|  | template <typename _Scalar> | 
|  | class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar> | 
|  | { | 
|  | typedef _Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef DiagonalPreconditioner<_Scalar> Base; | 
|  | using Base::m_invdiag; | 
|  | public: | 
|  |  | 
|  | LeastSquareDiagonalPreconditioner() : Base() {} | 
|  |  | 
|  | template<typename MatType> | 
|  | explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base() | 
|  | { | 
|  | compute(mat); | 
|  | } | 
|  |  | 
|  | template<typename MatType> | 
|  | LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& ) | 
|  | { | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename MatType> | 
|  | LeastSquareDiagonalPreconditioner& factorize(const MatType& mat) | 
|  | { | 
|  | // Compute the inverse squared-norm of each column of mat | 
|  | m_invdiag.resize(mat.cols()); | 
|  | if(MatType::IsRowMajor) | 
|  | { | 
|  | m_invdiag.setZero(); | 
|  | for(Index j=0; j<mat.outerSize(); ++j) | 
|  | { | 
|  | for(typename MatType::InnerIterator it(mat,j); it; ++it) | 
|  | m_invdiag(it.index()) += numext::abs2(it.value()); | 
|  | } | 
|  | for(Index j=0; j<mat.cols(); ++j) | 
|  | if(numext::real(m_invdiag(j))>RealScalar(0)) | 
|  | m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j)); | 
|  | } | 
|  | else | 
|  | { | 
|  | for(Index j=0; j<mat.outerSize(); ++j) | 
|  | { | 
|  | RealScalar sum = mat.col(j).squaredNorm(); | 
|  | if(sum>RealScalar(0)) | 
|  | m_invdiag(j) = RealScalar(1)/sum; | 
|  | else | 
|  | m_invdiag(j) = RealScalar(1); | 
|  | } | 
|  | } | 
|  | Base::m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename MatType> | 
|  | LeastSquareDiagonalPreconditioner& compute(const MatType& mat) | 
|  | { | 
|  | return factorize(mat); | 
|  | } | 
|  |  | 
|  | ComputationInfo info() { return Success; } | 
|  |  | 
|  | protected: | 
|  | }; | 
|  |  | 
|  | /** \ingroup IterativeLinearSolvers_Module | 
|  | * \brief A naive preconditioner which approximates any matrix as the identity matrix | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa class DiagonalPreconditioner | 
|  | */ | 
|  | class IdentityPreconditioner | 
|  | { | 
|  | public: | 
|  |  | 
|  | IdentityPreconditioner() {} | 
|  |  | 
|  | template<typename MatrixType> | 
|  | explicit IdentityPreconditioner(const MatrixType& ) {} | 
|  |  | 
|  | template<typename MatrixType> | 
|  | IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | IdentityPreconditioner& factorize(const MatrixType& ) { return *this; } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | IdentityPreconditioner& compute(const MatrixType& ) { return *this; } | 
|  |  | 
|  | template<typename Rhs> | 
|  | inline const Rhs& solve(const Rhs& b) const { return b; } | 
|  |  | 
|  | ComputationInfo info() { return Success; } | 
|  | }; | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_BASIC_PRECONDITIONERS_H |