|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | /* | 
|  |  | 
|  | * NOTE: This file is the modified version of xpivotL.c file in SuperLU | 
|  |  | 
|  | * -- SuperLU routine (version 3.0) -- | 
|  | * Univ. of California Berkeley, Xerox Palo Alto Research Center, | 
|  | * and Lawrence Berkeley National Lab. | 
|  | * October 15, 2003 | 
|  | * | 
|  | * Copyright (c) 1994 by Xerox Corporation.  All rights reserved. | 
|  | * | 
|  | * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY | 
|  | * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK. | 
|  | * | 
|  | * Permission is hereby granted to use or copy this program for any | 
|  | * purpose, provided the above notices are retained on all copies. | 
|  | * Permission to modify the code and to distribute modified code is | 
|  | * granted, provided the above notices are retained, and a notice that | 
|  | * the code was modified is included with the above copyright notice. | 
|  | */ | 
|  | #ifndef SPARSELU_PIVOTL_H | 
|  | #define SPARSELU_PIVOTL_H | 
|  |  | 
|  | namespace Eigen { | 
|  | namespace internal { | 
|  |  | 
|  | /** | 
|  | * \brief Performs the numerical pivotin on the current column of L, and the CDIV operation. | 
|  | * | 
|  | * Pivot policy : | 
|  | * (1) Compute thresh = u * max_(i>=j) abs(A_ij); | 
|  | * (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN | 
|  | *           pivot row = k; | 
|  | *       ELSE IF abs(A_jj) >= thresh THEN | 
|  | *           pivot row = j; | 
|  | *       ELSE | 
|  | *           pivot row = m; | 
|  | * | 
|  | *   Note: If you absolutely want to use a given pivot order, then set u=0.0. | 
|  | * | 
|  | * \param jcol The current column of L | 
|  | * \param diagpivotthresh diagonal pivoting threshold | 
|  | * \param[in,out] perm_r Row permutation (threshold pivoting) | 
|  | * \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc' | 
|  | * \param[out] pivrow  The pivot row | 
|  | * \param glu Global LU data | 
|  | * \return 0 if success, i > 0 if U(i,i) is exactly zero | 
|  | * | 
|  | */ | 
|  | template <typename Scalar, typename StorageIndex> | 
|  | Index SparseLUImpl<Scalar,StorageIndex>::pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu) | 
|  | { | 
|  |  | 
|  | Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol | 
|  | Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0 | 
|  | Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion | 
|  | Index nsupr = glu.xlsub(fsupc+1) - lptr; // Number of rows in the supernode | 
|  | Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc); // leading dimension | 
|  | Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode | 
|  | Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode | 
|  | StorageIndex* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode | 
|  |  | 
|  | // Determine the largest abs numerical value for partial pivoting | 
|  | Index diagind = iperm_c(jcol); // diagonal index | 
|  | RealScalar pivmax(-1.0); | 
|  | Index pivptr = nsupc; | 
|  | Index diag = emptyIdxLU; | 
|  | RealScalar rtemp; | 
|  | Index isub, icol, itemp, k; | 
|  | for (isub = nsupc; isub < nsupr; ++isub) { | 
|  | using std::abs; | 
|  | rtemp = abs(lu_col_ptr[isub]); | 
|  | if (rtemp > pivmax) { | 
|  | pivmax = rtemp; | 
|  | pivptr = isub; | 
|  | } | 
|  | if (lsub_ptr[isub] == diagind) diag = isub; | 
|  | } | 
|  |  | 
|  | // Test for singularity | 
|  | if ( pivmax <= RealScalar(0.0) ) { | 
|  | // if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero | 
|  | pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr]; | 
|  | perm_r(pivrow) = StorageIndex(jcol); | 
|  | return (jcol+1); | 
|  | } | 
|  |  | 
|  | RealScalar thresh = diagpivotthresh * pivmax; | 
|  |  | 
|  | // Choose appropriate pivotal element | 
|  |  | 
|  | { | 
|  | // Test if the diagonal element can be used as a pivot (given the threshold value) | 
|  | if (diag >= 0 ) | 
|  | { | 
|  | // Diagonal element exists | 
|  | using std::abs; | 
|  | rtemp = abs(lu_col_ptr[diag]); | 
|  | if (rtemp != RealScalar(0.0) && rtemp >= thresh) pivptr = diag; | 
|  | } | 
|  | pivrow = lsub_ptr[pivptr]; | 
|  | } | 
|  |  | 
|  | // Record pivot row | 
|  | perm_r(pivrow) = StorageIndex(jcol); | 
|  | // Interchange row subscripts | 
|  | if (pivptr != nsupc ) | 
|  | { | 
|  | std::swap( lsub_ptr[pivptr], lsub_ptr[nsupc] ); | 
|  | // Interchange numerical values as well, for the two rows in the whole snode | 
|  | // such that L is indexed the same way as A | 
|  | for (icol = 0; icol <= nsupc; icol++) | 
|  | { | 
|  | itemp = pivptr + icol * lda; | 
|  | std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * lda]); | 
|  | } | 
|  | } | 
|  | // cdiv operations | 
|  | Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc]; | 
|  | for (k = nsupc+1; k < nsupr; k++) | 
|  | lu_col_ptr[k] *= temp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | } // end namespace internal | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // SPARSELU_PIVOTL_H |