|  |  | 
|  | //g++-4.4 -DNOMTL  -Wl,-rpath /usr/local/lib/oski -L /usr/local/lib/oski/ -l oski -l oski_util -l oski_util_Tid  -DOSKI -I ~/Coding/LinearAlgebra/mtl4/  spmv.cpp  -I .. -O2 -DNDEBUG -lrt  -lm -l oski_mat_CSC_Tid  -loskilt && ./a.out r200000 c200000 n100 t1 p1 | 
|  |  | 
|  | #define SCALAR double | 
|  |  | 
|  | #include <iostream> | 
|  | #include <algorithm> | 
|  | #include "BenchTimer.h" | 
|  | #include "BenchSparseUtil.h" | 
|  |  | 
|  | #define SPMV_BENCH(CODE) BENCH(t,tries,repeats,CODE); | 
|  |  | 
|  | // #ifdef MKL | 
|  | // | 
|  | // #include "mkl_types.h" | 
|  | // #include "mkl_spblas.h" | 
|  | // | 
|  | // template<typename Lhs,typename Rhs,typename Res> | 
|  | // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res) | 
|  | // { | 
|  | //   char n = 'N'; | 
|  | //   float alpha = 1; | 
|  | //   char matdescra[6]; | 
|  | //   matdescra[0] = 'G'; | 
|  | //   matdescra[1] = 0; | 
|  | //   matdescra[2] = 0; | 
|  | //   matdescra[3] = 'C'; | 
|  | //   mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra, | 
|  | //              lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(), | 
|  | //              pntre, b, &ldb, &beta, c, &ldc); | 
|  | // //   mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1, | 
|  | // //                 lhs._valuePtr(), lhs.rows(), DST, dst_stride); | 
|  | // } | 
|  | // | 
|  | // #endif | 
|  |  | 
|  | int main(int argc, char *argv[]) | 
|  | { | 
|  | int size = 10000; | 
|  | int rows = size; | 
|  | int cols = size; | 
|  | int nnzPerCol = 40; | 
|  | int tries = 2; | 
|  | int repeats = 2; | 
|  |  | 
|  | bool need_help = false; | 
|  | for(int i = 1; i < argc; i++) | 
|  | { | 
|  | if(argv[i][0] == 'r') | 
|  | { | 
|  | rows = atoi(argv[i]+1); | 
|  | } | 
|  | else if(argv[i][0] == 'c') | 
|  | { | 
|  | cols = atoi(argv[i]+1); | 
|  | } | 
|  | else if(argv[i][0] == 'n') | 
|  | { | 
|  | nnzPerCol = atoi(argv[i]+1); | 
|  | } | 
|  | else if(argv[i][0] == 't') | 
|  | { | 
|  | tries = atoi(argv[i]+1); | 
|  | } | 
|  | else if(argv[i][0] == 'p') | 
|  | { | 
|  | repeats = atoi(argv[i]+1); | 
|  | } | 
|  | else | 
|  | { | 
|  | need_help = true; | 
|  | } | 
|  | } | 
|  | if(need_help) | 
|  | { | 
|  | std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> t<nb tries> p<nb repeats>\n"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol << " non zeros per column. (" << repeats << " repeats, and " << tries << " tries)\n\n"; | 
|  |  | 
|  | EigenSparseMatrix sm(rows,cols); | 
|  | DenseVector dv(cols), res(rows); | 
|  | dv.setRandom(); | 
|  |  | 
|  | BenchTimer t; | 
|  | while (nnzPerCol>=4) | 
|  | { | 
|  | std::cout << "nnz: " << nnzPerCol << "\n"; | 
|  | sm.setZero(); | 
|  | fillMatrix2(nnzPerCol, rows, cols, sm); | 
|  |  | 
|  | // dense matrices | 
|  | #ifdef DENSEMATRIX | 
|  | { | 
|  | DenseMatrix dm(rows,cols), (rows,cols); | 
|  | eiToDense(sm, dm); | 
|  |  | 
|  | SPMV_BENCH(res = dm * sm); | 
|  | std::cout << "Dense       " << t.value()/repeats << "\t"; | 
|  |  | 
|  | SPMV_BENCH(res = dm.transpose() * sm); | 
|  | std::cout << t.value()/repeats << endl; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // eigen sparse matrices | 
|  | { | 
|  | SPMV_BENCH(res.noalias() += sm * dv; ) | 
|  | std::cout << "Eigen       " << t.value()/repeats << "\t"; | 
|  |  | 
|  | SPMV_BENCH(res.noalias() += sm.transpose() * dv; ) | 
|  | std::cout << t.value()/repeats << endl; | 
|  | } | 
|  |  | 
|  | // CSparse | 
|  | #ifdef CSPARSE | 
|  | { | 
|  | std::cout << "CSparse \n"; | 
|  | cs *csm; | 
|  | eiToCSparse(sm, csm); | 
|  |  | 
|  | //       BENCH(); | 
|  | //       timer.stop(); | 
|  | //       std::cout << "   a * b:\t" << timer.value() << endl; | 
|  |  | 
|  | //       BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } ); | 
|  | //       std::cout << "   a * b:\t" << timer.value() << endl; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef OSKI | 
|  | { | 
|  | oski_matrix_t om; | 
|  | oski_vecview_t ov, ores; | 
|  | oski_Init(); | 
|  | om = oski_CreateMatCSC(sm._outerIndexPtr(), sm._innerIndexPtr(), sm._valuePtr(), rows, cols, | 
|  | SHARE_INPUTMAT, 1, INDEX_ZERO_BASED); | 
|  | ov = oski_CreateVecView(dv.data(), cols, STRIDE_UNIT); | 
|  | ores = oski_CreateVecView(res.data(), rows, STRIDE_UNIT); | 
|  |  | 
|  | SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) ); | 
|  | std::cout << "OSKI        " << t.value()/repeats << "\t"; | 
|  |  | 
|  | SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) ); | 
|  | std::cout << t.value()/repeats << "\n"; | 
|  |  | 
|  | // tune | 
|  | t.reset(); | 
|  | t.start(); | 
|  | oski_SetHintMatMult(om, OP_NORMAL, 1.0, SYMBOLIC_VEC, 0.0, SYMBOLIC_VEC, ALWAYS_TUNE_AGGRESSIVELY); | 
|  | oski_TuneMat(om); | 
|  | t.stop(); | 
|  | double tuning = t.value(); | 
|  |  | 
|  | SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) ); | 
|  | std::cout << "OSKI tuned  " << t.value()/repeats << "\t"; | 
|  |  | 
|  | SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) ); | 
|  | std::cout << t.value()/repeats << "\t(" << tuning <<  ")\n"; | 
|  |  | 
|  |  | 
|  | oski_DestroyMat(om); | 
|  | oski_DestroyVecView(ov); | 
|  | oski_DestroyVecView(ores); | 
|  | oski_Close(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef NOUBLAS | 
|  | { | 
|  | using namespace boost::numeric; | 
|  | UblasMatrix um(rows,cols); | 
|  | eiToUblas(sm, um); | 
|  |  | 
|  | boost::numeric::ublas::vector<Scalar> uv(cols), ures(rows); | 
|  | Map<Matrix<Scalar,Dynamic,1> >(&uv[0], cols) = dv; | 
|  | Map<Matrix<Scalar,Dynamic,1> >(&ures[0], rows) = res; | 
|  |  | 
|  | SPMV_BENCH(ublas::axpy_prod(um, uv, ures, true)); | 
|  | std::cout << "ublas       " << t.value()/repeats << "\t"; | 
|  |  | 
|  | SPMV_BENCH(ublas::axpy_prod(boost::numeric::ublas::trans(um), uv, ures, true)); | 
|  | std::cout << t.value()/repeats << endl; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // GMM++ | 
|  | #ifndef NOGMM | 
|  | { | 
|  | GmmSparse gm(rows,cols); | 
|  | eiToGmm(sm, gm); | 
|  |  | 
|  | std::vector<Scalar> gv(cols), gres(rows); | 
|  | Map<Matrix<Scalar,Dynamic,1> >(&gv[0], cols) = dv; | 
|  | Map<Matrix<Scalar,Dynamic,1> >(&gres[0], rows) = res; | 
|  |  | 
|  | SPMV_BENCH(gmm::mult(gm, gv, gres)); | 
|  | std::cout << "GMM++       " << t.value()/repeats << "\t"; | 
|  |  | 
|  | SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres)); | 
|  | std::cout << t.value()/repeats << endl; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // MTL4 | 
|  | #ifndef NOMTL | 
|  | { | 
|  | MtlSparse mm(rows,cols); | 
|  | eiToMtl(sm, mm); | 
|  | mtl::dense_vector<Scalar> mv(cols, 1.0); | 
|  | mtl::dense_vector<Scalar> mres(rows, 1.0); | 
|  |  | 
|  | SPMV_BENCH(mres = mm * mv); | 
|  | std::cout << "MTL4        " << t.value()/repeats << "\t"; | 
|  |  | 
|  | SPMV_BENCH(mres = trans(mm) * mv); | 
|  | std::cout << t.value()/repeats << endl; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | std::cout << "\n"; | 
|  |  | 
|  | if(nnzPerCol==1) | 
|  | break; | 
|  | nnzPerCol -= nnzPerCol/2; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  |