| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_NO_STATIC_ASSERT | 
 | #define EIGEN_NO_STATIC_ASSERT // turn static asserts into runtime asserts in order to check them | 
 | #endif | 
 |  | 
 | #include "main.h" | 
 |  | 
 | #define EIGEN_TESTMAP_MAX_SIZE 256 | 
 |  | 
 | template<typename VectorType> void map_class_vector(const VectorType& m) | 
 | { | 
 |   typedef typename VectorType::Scalar Scalar; | 
 |  | 
 |   Index size = m.size(); | 
 |  | 
 |   Scalar* array1 = internal::aligned_new<Scalar>(size); | 
 |   Scalar* array2 = internal::aligned_new<Scalar>(size); | 
 |   Scalar* array3 = new Scalar[size+1]; | 
 |   Scalar* array3unaligned = (internal::UIntPtr(array3)%EIGEN_MAX_ALIGN_BYTES) == 0 ? array3+1 : array3; | 
 |   Scalar  array4[EIGEN_TESTMAP_MAX_SIZE]; | 
 |  | 
 |   Map<VectorType, AlignedMax>(array1, size) = VectorType::Random(size); | 
 |   Map<VectorType, AlignedMax>(array2, size) = Map<VectorType,AlignedMax>(array1, size); | 
 |   Map<VectorType>(array3unaligned, size) = Map<VectorType>(array1, size); | 
 |   Map<VectorType>(array4, size)          = Map<VectorType,AlignedMax>(array1, size); | 
 |   VectorType ma1 = Map<VectorType, AlignedMax>(array1, size); | 
 |   VectorType ma2 = Map<VectorType, AlignedMax>(array2, size); | 
 |   VectorType ma3 = Map<VectorType>(array3unaligned, size); | 
 |   VectorType ma4 = Map<VectorType>(array4, size); | 
 |   VERIFY_IS_EQUAL(ma1, ma2); | 
 |   VERIFY_IS_EQUAL(ma1, ma3); | 
 |   VERIFY_IS_EQUAL(ma1, ma4); | 
 |   #ifdef EIGEN_VECTORIZE | 
 |   if(internal::packet_traits<Scalar>::Vectorizable && size>=AlignedMax) | 
 |     VERIFY_RAISES_ASSERT((Map<VectorType,AlignedMax>(array3unaligned, size))) | 
 |   #endif | 
 |  | 
 |   internal::aligned_delete(array1, size); | 
 |   internal::aligned_delete(array2, size); | 
 |   delete[] array3; | 
 | } | 
 |  | 
 | template<typename MatrixType> void map_class_matrix(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   Index rows = m.rows(), cols = m.cols(), size = rows*cols; | 
 |   Scalar s1 = internal::random<Scalar>(); | 
 |  | 
 |   // array1 and array2 -> aligned heap allocation | 
 |   Scalar* array1 = internal::aligned_new<Scalar>(size); | 
 |   for(int i = 0; i < size; i++) array1[i] = Scalar(1); | 
 |   Scalar* array2 = internal::aligned_new<Scalar>(size); | 
 |   for(int i = 0; i < size; i++) array2[i] = Scalar(1); | 
 |   // array3unaligned -> unaligned pointer to heap | 
 |   Scalar* array3 = new Scalar[size+1]; | 
 |   Index sizep1 = size + 1; // <- without this temporary MSVC 2103 generates bad code | 
 |   for(Index i = 0; i < sizep1; i++) array3[i] = Scalar(1); | 
 |   Scalar* array3unaligned = (internal::UIntPtr(array3)%EIGEN_MAX_ALIGN_BYTES) == 0 ? array3+1 : array3; | 
 |   Scalar array4[256]; | 
 |   if(size<=256) | 
 |     for(int i = 0; i < size; i++) array4[i] = Scalar(1); | 
 |    | 
 |   Map<MatrixType> map1(array1, rows, cols); | 
 |   Map<MatrixType, AlignedMax> map2(array2, rows, cols); | 
 |   Map<MatrixType> map3(array3unaligned, rows, cols); | 
 |   Map<MatrixType> map4(array4, rows, cols); | 
 |    | 
 |   VERIFY_IS_EQUAL(map1, MatrixType::Ones(rows,cols)); | 
 |   VERIFY_IS_EQUAL(map2, MatrixType::Ones(rows,cols)); | 
 |   VERIFY_IS_EQUAL(map3, MatrixType::Ones(rows,cols)); | 
 |   map1 = MatrixType::Random(rows,cols); | 
 |   map2 = map1; | 
 |   map3 = map1; | 
 |   MatrixType ma1 = map1; | 
 |   MatrixType ma2 = map2; | 
 |   MatrixType ma3 = map3; | 
 |   VERIFY_IS_EQUAL(map1, map2); | 
 |   VERIFY_IS_EQUAL(map1, map3); | 
 |   VERIFY_IS_EQUAL(ma1, ma2); | 
 |   VERIFY_IS_EQUAL(ma1, ma3); | 
 |   VERIFY_IS_EQUAL(ma1, map3); | 
 |    | 
 |   VERIFY_IS_APPROX(s1*map1, s1*map2); | 
 |   VERIFY_IS_APPROX(s1*ma1, s1*ma2); | 
 |   VERIFY_IS_EQUAL(s1*ma1, s1*ma3); | 
 |   VERIFY_IS_APPROX(s1*map1, s1*map3); | 
 |    | 
 |   map2 *= s1; | 
 |   map3 *= s1; | 
 |   VERIFY_IS_APPROX(s1*map1, map2); | 
 |   VERIFY_IS_APPROX(s1*map1, map3); | 
 |    | 
 |   if(size<=256) | 
 |   { | 
 |     VERIFY_IS_EQUAL(map4, MatrixType::Ones(rows,cols)); | 
 |     map4 = map1; | 
 |     MatrixType ma4 = map4; | 
 |     VERIFY_IS_EQUAL(map1, map4); | 
 |     VERIFY_IS_EQUAL(ma1, map4); | 
 |     VERIFY_IS_EQUAL(ma1, ma4); | 
 |     VERIFY_IS_APPROX(s1*map1, s1*map4); | 
 |      | 
 |     map4 *= s1; | 
 |     VERIFY_IS_APPROX(s1*map1, map4); | 
 |   } | 
 |  | 
 |   internal::aligned_delete(array1, size); | 
 |   internal::aligned_delete(array2, size); | 
 |   delete[] array3; | 
 | } | 
 |  | 
 | template<typename VectorType> void map_static_methods(const VectorType& m) | 
 | { | 
 |   typedef typename VectorType::Scalar Scalar; | 
 |  | 
 |   Index size = m.size(); | 
 |  | 
 |   Scalar* array1 = internal::aligned_new<Scalar>(size); | 
 |   Scalar* array2 = internal::aligned_new<Scalar>(size); | 
 |   Scalar* array3 = new Scalar[size+1]; | 
 |   Scalar* array3unaligned = internal::UIntPtr(array3)%EIGEN_MAX_ALIGN_BYTES == 0 ? array3+1 : array3; | 
 |  | 
 |   VectorType::MapAligned(array1, size) = VectorType::Random(size); | 
 |   VectorType::Map(array2, size) = VectorType::Map(array1, size); | 
 |   VectorType::Map(array3unaligned, size) = VectorType::Map(array1, size); | 
 |   VectorType ma1 = VectorType::Map(array1, size); | 
 |   VectorType ma2 = VectorType::MapAligned(array2, size); | 
 |   VectorType ma3 = VectorType::Map(array3unaligned, size); | 
 |   VERIFY_IS_EQUAL(ma1, ma2); | 
 |   VERIFY_IS_EQUAL(ma1, ma3); | 
 |  | 
 |   internal::aligned_delete(array1, size); | 
 |   internal::aligned_delete(array2, size); | 
 |   delete[] array3; | 
 | } | 
 |  | 
 | template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) | 
 | { | 
 |   // there's a lot that we can't test here while still having this test compile! | 
 |   // the only possible approach would be to run a script trying to compile stuff and checking that it fails. | 
 |   // CMake can help with that. | 
 |  | 
 |   // verify that map-to-const don't have LvalueBit | 
 |   typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; | 
 |   VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); | 
 |   VERIFY( !(internal::traits<Map<ConstPlainObjectType, AlignedMax> >::Flags & LvalueBit) ); | 
 |   VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); | 
 |   VERIFY( !(Map<ConstPlainObjectType, AlignedMax>::Flags & LvalueBit) ); | 
 | } | 
 |  | 
 | template<typename Scalar> | 
 | void map_not_aligned_on_scalar() | 
 | { | 
 |   typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; | 
 |   Index size = 11; | 
 |   Scalar* array1 = internal::aligned_new<Scalar>((size+1)*(size+1)+1); | 
 |   Scalar* array2 = reinterpret_cast<Scalar*>(sizeof(Scalar)/2+std::size_t(array1)); | 
 |   Map<MatrixType,0,OuterStride<> > map2(array2, size, size, OuterStride<>(size+1)); | 
 |   MatrixType m2 = MatrixType::Random(size,size); | 
 |   map2 = m2; | 
 |   VERIFY_IS_EQUAL(m2, map2); | 
 |    | 
 |   typedef Matrix<Scalar,Dynamic,1> VectorType; | 
 |   Map<VectorType> map3(array2, size); | 
 |   MatrixType v3 = VectorType::Random(size); | 
 |   map3 = v3; | 
 |   VERIFY_IS_EQUAL(v3, map3); | 
 |    | 
 |   internal::aligned_delete(array1, (size+1)*(size+1)+1); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(mapped_matrix) | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( map_class_vector(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_1( check_const_correctness(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( map_class_vector(Vector4d()) ); | 
 |     CALL_SUBTEST_2( map_class_vector(VectorXd(13)) ); | 
 |     CALL_SUBTEST_2( check_const_correctness(Matrix4d()) ); | 
 |     CALL_SUBTEST_3( map_class_vector(RowVector4f()) ); | 
 |     CALL_SUBTEST_4( map_class_vector(VectorXcf(8)) ); | 
 |     CALL_SUBTEST_5( map_class_vector(VectorXi(12)) ); | 
 |     CALL_SUBTEST_5( check_const_correctness(VectorXi(12)) ); | 
 |  | 
 |     CALL_SUBTEST_1( map_class_matrix(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( map_class_matrix(Matrix4d()) ); | 
 |     CALL_SUBTEST_11( map_class_matrix(Matrix<float,3,5>()) ); | 
 |     CALL_SUBTEST_4( map_class_matrix(MatrixXcf(internal::random<int>(1,10),internal::random<int>(1,10))) ); | 
 |     CALL_SUBTEST_5( map_class_matrix(MatrixXi(internal::random<int>(1,10),internal::random<int>(1,10))) ); | 
 |  | 
 |     CALL_SUBTEST_6( map_static_methods(Matrix<double, 1, 1>()) ); | 
 |     CALL_SUBTEST_7( map_static_methods(Vector3f()) ); | 
 |     CALL_SUBTEST_8( map_static_methods(RowVector3d()) ); | 
 |     CALL_SUBTEST_9( map_static_methods(VectorXcd(8)) ); | 
 |     CALL_SUBTEST_10( map_static_methods(VectorXf(12)) ); | 
 |     CALL_SUBTEST_11( map_not_aligned_on_scalar<double>() ); | 
 |   } | 
 | } |