|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename Scalar> | 
|  | void dogleg( | 
|  | const Matrix< Scalar, Dynamic, Dynamic >  &qrfac, | 
|  | const Matrix< Scalar, Dynamic, 1 >  &diag, | 
|  | const Matrix< Scalar, Dynamic, 1 >  &qtb, | 
|  | Scalar delta, | 
|  | Matrix< Scalar, Dynamic, 1 >  &x) | 
|  | { | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  |  | 
|  | typedef DenseIndex Index; | 
|  |  | 
|  | /* Local variables */ | 
|  | Index i, j; | 
|  | Scalar sum, temp, alpha, bnorm; | 
|  | Scalar gnorm, qnorm; | 
|  | Scalar sgnorm; | 
|  |  | 
|  | /* Function Body */ | 
|  | const Scalar epsmch = NumTraits<Scalar>::epsilon(); | 
|  | const Index n = qrfac.cols(); | 
|  | eigen_assert(n==qtb.size()); | 
|  | eigen_assert(n==x.size()); | 
|  | eigen_assert(n==diag.size()); | 
|  | Matrix< Scalar, Dynamic, 1 >  wa1(n), wa2(n); | 
|  |  | 
|  | /* first, calculate the gauss-newton direction. */ | 
|  | for (j = n-1; j >=0; --j) { | 
|  | temp = qrfac(j,j); | 
|  | if (temp == 0.) { | 
|  | temp = epsmch * qrfac.col(j).head(j+1).maxCoeff(); | 
|  | if (temp == 0.) | 
|  | temp = epsmch; | 
|  | } | 
|  | if (j==n-1) | 
|  | x[j] = qtb[j] / temp; | 
|  | else | 
|  | x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp; | 
|  | } | 
|  |  | 
|  | /* test whether the gauss-newton direction is acceptable. */ | 
|  | qnorm = diag.cwiseProduct(x).stableNorm(); | 
|  | if (qnorm <= delta) | 
|  | return; | 
|  |  | 
|  | // TODO : this path is not tested by Eigen unit tests | 
|  |  | 
|  | /* the gauss-newton direction is not acceptable. */ | 
|  | /* next, calculate the scaled gradient direction. */ | 
|  |  | 
|  | wa1.fill(0.); | 
|  | for (j = 0; j < n; ++j) { | 
|  | wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j]; | 
|  | wa1[j] /= diag[j]; | 
|  | } | 
|  |  | 
|  | /* calculate the norm of the scaled gradient and test for */ | 
|  | /* the special case in which the scaled gradient is zero. */ | 
|  | gnorm = wa1.stableNorm(); | 
|  | sgnorm = 0.; | 
|  | alpha = delta / qnorm; | 
|  | if (gnorm == 0.) | 
|  | goto algo_end; | 
|  |  | 
|  | /* calculate the point along the scaled gradient */ | 
|  | /* at which the quadratic is minimized. */ | 
|  | wa1.array() /= (diag*gnorm).array(); | 
|  | // TODO : once unit tests cover this part,: | 
|  | // wa2 = qrfac.template triangularView<Upper>() * wa1; | 
|  | for (j = 0; j < n; ++j) { | 
|  | sum = 0.; | 
|  | for (i = j; i < n; ++i) { | 
|  | sum += qrfac(j,i) * wa1[i]; | 
|  | } | 
|  | wa2[j] = sum; | 
|  | } | 
|  | temp = wa2.stableNorm(); | 
|  | sgnorm = gnorm / temp / temp; | 
|  |  | 
|  | /* test whether the scaled gradient direction is acceptable. */ | 
|  | alpha = 0.; | 
|  | if (sgnorm >= delta) | 
|  | goto algo_end; | 
|  |  | 
|  | /* the scaled gradient direction is not acceptable. */ | 
|  | /* finally, calculate the point along the dogleg */ | 
|  | /* at which the quadratic is minimized. */ | 
|  | bnorm = qtb.stableNorm(); | 
|  | temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta); | 
|  | temp = temp - delta / qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs2(delta / qnorm)) * (1.-numext::abs2(sgnorm / delta))); | 
|  | alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp; | 
|  | algo_end: | 
|  |  | 
|  | /* form appropriate convex combination of the gauss-newton */ | 
|  | /* direction and the scaled gradient direction. */ | 
|  | temp = (1.-alpha) * (std::min)(sgnorm,delta); | 
|  | x = temp * wa1 + alpha * x; | 
|  | } | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | } // end namespace Eigen |