| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| #define EIGEN_TEST_FUNC cxx11_tensor_cuda |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| #define EIGEN_USE_GPU |
| |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| void test_cuda_elementwise_small() { |
| Tensor<float, 1> in1(Eigen::array<int, 1>(2)); |
| Tensor<float, 1> in2(Eigen::array<int, 1>(2)); |
| Tensor<float, 1> out(Eigen::array<int, 1>(2)); |
| in1.setRandom(); |
| in2.setRandom(); |
| |
| std::size_t in1_bytes = in1.size() * sizeof(float); |
| std::size_t in2_bytes = in2.size() * sizeof(float); |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_in1; |
| float* d_in2; |
| float* d_out; |
| cudaMalloc((void**)(&d_in1), in1_bytes); |
| cudaMalloc((void**)(&d_in2), in2_bytes); |
| cudaMalloc((void**)(&d_out), out_bytes); |
| |
| cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in1( |
| d_in1, Eigen::array<int, 1>(2)); |
| Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in2( |
| d_in2, Eigen::array<int, 1>(2)); |
| Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_out( |
| d_out, Eigen::array<int, 1>(2)); |
| |
| gpu_out.device(gpu_device) = gpu_in1 + gpu_in2; |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, |
| gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 2; ++i) { |
| VERIFY_IS_APPROX( |
| out(Eigen::array<int, 1>(i)), |
| in1(Eigen::array<int, 1>(i)) + in2(Eigen::array<int, 1>(i))); |
| } |
| |
| cudaFree(d_in1); |
| cudaFree(d_in2); |
| cudaFree(d_out); |
| } |
| |
| void test_cuda_elementwise() |
| { |
| Tensor<float, 3> in1(Eigen::array<int, 3>(72,53,97)); |
| Tensor<float, 3> in2(Eigen::array<int, 3>(72,53,97)); |
| Tensor<float, 3> in3(Eigen::array<int, 3>(72,53,97)); |
| Tensor<float, 3> out(Eigen::array<int, 3>(72,53,97)); |
| in1.setRandom(); |
| in2.setRandom(); |
| in3.setRandom(); |
| |
| std::size_t in1_bytes = in1.size() * sizeof(float); |
| std::size_t in2_bytes = in2.size() * sizeof(float); |
| std::size_t in3_bytes = in3.size() * sizeof(float); |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_in1; |
| float* d_in2; |
| float* d_in3; |
| float* d_out; |
| cudaMalloc((void**)(&d_in1), in1_bytes); |
| cudaMalloc((void**)(&d_in2), in2_bytes); |
| cudaMalloc((void**)(&d_in3), in3_bytes); |
| cudaMalloc((void**)(&d_out), out_bytes); |
| |
| cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_in3, in3.data(), in3_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in1(d_in1, Eigen::array<int, 3>(72,53,97)); |
| Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in2(d_in2, Eigen::array<int, 3>(72,53,97)); |
| Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in3(d_in3, Eigen::array<int, 3>(72,53,97)); |
| Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_out(d_out, Eigen::array<int, 3>(72,53,97)); |
| |
| gpu_out.device(gpu_device) = gpu_in1 + gpu_in2 * gpu_in3; |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 72; ++i) { |
| for (int j = 0; j < 53; ++j) { |
| for (int k = 0; k < 97; ++k) { |
| VERIFY_IS_APPROX(out(Eigen::array<int, 3>(i,j,k)), in1(Eigen::array<int, 3>(i,j,k)) + in2(Eigen::array<int, 3>(i,j,k)) * in3(Eigen::array<int, 3>(i,j,k))); |
| } |
| } |
| } |
| |
| cudaFree(d_in1); |
| cudaFree(d_in2); |
| cudaFree(d_in3); |
| cudaFree(d_out); |
| } |
| |
| void test_cuda_props() { |
| Tensor<float, 1> in1(200); |
| Tensor<bool, 1> out(200); |
| in1.setRandom(); |
| |
| std::size_t in1_bytes = in1.size() * sizeof(float); |
| std::size_t out_bytes = out.size() * sizeof(bool); |
| |
| float* d_in1; |
| bool* d_out; |
| cudaMalloc((void**)(&d_in1), in1_bytes); |
| cudaMalloc((void**)(&d_out), out_bytes); |
| |
| cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in1( |
| d_in1, 200); |
| Eigen::TensorMap<Eigen::Tensor<bool, 1>, Eigen::Aligned> gpu_out( |
| d_out, 200); |
| |
| gpu_out.device(gpu_device) = (gpu_in1.isnan)(); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, |
| gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 200; ++i) { |
| VERIFY_IS_EQUAL(out(i), (std::isnan)(in1(i))); |
| } |
| |
| cudaFree(d_in1); |
| cudaFree(d_out); |
| } |
| |
| void test_cuda_reduction() |
| { |
| Tensor<float, 4> in1(72,53,97,113); |
| Tensor<float, 2> out(72,97); |
| in1.setRandom(); |
| |
| std::size_t in1_bytes = in1.size() * sizeof(float); |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_in1; |
| float* d_out; |
| cudaMalloc((void**)(&d_in1), in1_bytes); |
| cudaMalloc((void**)(&d_out), out_bytes); |
| |
| cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 4> > gpu_in1(d_in1, 72,53,97,113); |
| Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97); |
| |
| array<int, 2> reduction_axis; |
| reduction_axis[0] = 1; |
| reduction_axis[1] = 3; |
| |
| gpu_out.device(gpu_device) = gpu_in1.maximum(reduction_axis); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 72; ++i) { |
| for (int j = 0; j < 97; ++j) { |
| float expected = 0; |
| for (int k = 0; k < 53; ++k) { |
| for (int l = 0; l < 113; ++l) { |
| expected = |
| std::max<float>(expected, in1(i, k, j, l)); |
| } |
| } |
| VERIFY_IS_APPROX(out(i,j), expected); |
| } |
| } |
| |
| cudaFree(d_in1); |
| cudaFree(d_out); |
| } |
| |
| template<int DataLayout> |
| void test_cuda_contraction() |
| { |
| // with these dimensions, the output has 300 * 140 elements, which is |
| // more than 30 * 1024, which is the number of threads in blocks on |
| // a 15 SM GK110 GPU |
| Tensor<float, 4, DataLayout> t_left(6, 50, 3, 31); |
| Tensor<float, 5, DataLayout> t_right(Eigen::array<int, 5>(3, 31, 7, 20, 1)); |
| Tensor<float, 5, DataLayout> t_result(Eigen::array<int, 5>(6, 50, 7, 20, 1)); |
| |
| t_left.setRandom(); |
| t_right.setRandom(); |
| |
| std::size_t t_left_bytes = t_left.size() * sizeof(float); |
| std::size_t t_right_bytes = t_right.size() * sizeof(float); |
| std::size_t t_result_bytes = t_result.size() * sizeof(float); |
| |
| float* d_t_left; |
| float* d_t_right; |
| float* d_t_result; |
| |
| cudaMalloc((void**)(&d_t_left), t_left_bytes); |
| cudaMalloc((void**)(&d_t_right), t_right_bytes); |
| cudaMalloc((void**)(&d_t_result), t_result_bytes); |
| |
| cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_t_left(d_t_left, 6, 50, 3, 31); |
| Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_t_right(d_t_right, 3, 31, 7, 20, 1); |
| Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_t_result(d_t_result, 6, 50, 7, 20, 1); |
| |
| typedef Eigen::Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> > MapXf; |
| MapXf m_left(t_left.data(), 300, 93); |
| MapXf m_right(t_right.data(), 93, 140); |
| Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(300, 140); |
| |
| typedef Tensor<float, 1>::DimensionPair DimPair; |
| Eigen::array<DimPair, 2> dims; |
| dims[0] = DimPair(2, 0); |
| dims[1] = DimPair(3, 1); |
| |
| m_result = m_left * m_right; |
| gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); |
| |
| cudaMemcpy(t_result.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost); |
| |
| for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) { |
| if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4) { |
| std::cout << "mismatch detected at index " << i << ": " << t_result.data()[i] << " vs " << m_result.data()[i] << std::endl; |
| assert(false); |
| } |
| } |
| |
| cudaFree(d_t_left); |
| cudaFree(d_t_right); |
| cudaFree(d_t_result); |
| } |
| |
| template<int DataLayout> |
| void test_cuda_convolution_1d() |
| { |
| Tensor<float, 4, DataLayout> input(74,37,11,137); |
| Tensor<float, 1, DataLayout> kernel(4); |
| Tensor<float, 4, DataLayout> out(74,34,11,137); |
| input = input.constant(10.0f) + input.random(); |
| kernel = kernel.constant(7.0f) + kernel.random(); |
| |
| std::size_t input_bytes = input.size() * sizeof(float); |
| std::size_t kernel_bytes = kernel.size() * sizeof(float); |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_input; |
| float* d_kernel; |
| float* d_out; |
| cudaMalloc((void**)(&d_input), input_bytes); |
| cudaMalloc((void**)(&d_kernel), kernel_bytes); |
| cudaMalloc((void**)(&d_out), out_bytes); |
| |
| cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_input(d_input, 74,37,11,137); |
| Eigen::TensorMap<Eigen::Tensor<float, 1, DataLayout> > gpu_kernel(d_kernel, 4); |
| Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_out(d_out, 74,34,11,137); |
| |
| Eigen::array<int, 1> dims(1); |
| gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 74; ++i) { |
| for (int j = 0; j < 34; ++j) { |
| for (int k = 0; k < 11; ++k) { |
| for (int l = 0; l < 137; ++l) { |
| const float result = out(i,j,k,l); |
| const float expected = input(i,j+0,k,l) * kernel(0) + input(i,j+1,k,l) * kernel(1) + |
| input(i,j+2,k,l) * kernel(2) + input(i,j+3,k,l) * kernel(3); |
| VERIFY_IS_APPROX(result, expected); |
| } |
| } |
| } |
| } |
| |
| cudaFree(d_input); |
| cudaFree(d_kernel); |
| cudaFree(d_out); |
| } |
| |
| void test_cuda_convolution_inner_dim_col_major_1d() |
| { |
| Tensor<float, 4, ColMajor> input(74,9,11,7); |
| Tensor<float, 1, ColMajor> kernel(4); |
| Tensor<float, 4, ColMajor> out(71,9,11,7); |
| input = input.constant(10.0f) + input.random(); |
| kernel = kernel.constant(7.0f) + kernel.random(); |
| |
| std::size_t input_bytes = input.size() * sizeof(float); |
| std::size_t kernel_bytes = kernel.size() * sizeof(float); |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_input; |
| float* d_kernel; |
| float* d_out; |
| cudaMalloc((void**)(&d_input), input_bytes); |
| cudaMalloc((void**)(&d_kernel), kernel_bytes); |
| cudaMalloc((void**)(&d_out), out_bytes); |
| |
| cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 4, ColMajor> > gpu_input(d_input,74,9,11,7); |
| Eigen::TensorMap<Eigen::Tensor<float, 1, ColMajor> > gpu_kernel(d_kernel,4); |
| Eigen::TensorMap<Eigen::Tensor<float, 4, ColMajor> > gpu_out(d_out,71,9,11,7); |
| |
| Eigen::array<int, 1> dims(0); |
| gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 71; ++i) { |
| for (int j = 0; j < 9; ++j) { |
| for (int k = 0; k < 11; ++k) { |
| for (int l = 0; l < 7; ++l) { |
| const float result = out(i,j,k,l); |
| const float expected = input(i+0,j,k,l) * kernel(0) + input(i+1,j,k,l) * kernel(1) + |
| input(i+2,j,k,l) * kernel(2) + input(i+3,j,k,l) * kernel(3); |
| VERIFY_IS_APPROX(result, expected); |
| } |
| } |
| } |
| } |
| |
| cudaFree(d_input); |
| cudaFree(d_kernel); |
| cudaFree(d_out); |
| } |
| |
| void test_cuda_convolution_inner_dim_row_major_1d() |
| { |
| Tensor<float, 4, RowMajor> input(7,9,11,74); |
| Tensor<float, 1, RowMajor> kernel(4); |
| Tensor<float, 4, RowMajor> out(7,9,11,71); |
| input = input.constant(10.0f) + input.random(); |
| kernel = kernel.constant(7.0f) + kernel.random(); |
| |
| std::size_t input_bytes = input.size() * sizeof(float); |
| std::size_t kernel_bytes = kernel.size() * sizeof(float); |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_input; |
| float* d_kernel; |
| float* d_out; |
| cudaMalloc((void**)(&d_input), input_bytes); |
| cudaMalloc((void**)(&d_kernel), kernel_bytes); |
| cudaMalloc((void**)(&d_out), out_bytes); |
| |
| cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 4, RowMajor> > gpu_input(d_input, 7,9,11,74); |
| Eigen::TensorMap<Eigen::Tensor<float, 1, RowMajor> > gpu_kernel(d_kernel, 4); |
| Eigen::TensorMap<Eigen::Tensor<float, 4, RowMajor> > gpu_out(d_out, 7,9,11,71); |
| |
| Eigen::array<int, 1> dims(3); |
| gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 7; ++i) { |
| for (int j = 0; j < 9; ++j) { |
| for (int k = 0; k < 11; ++k) { |
| for (int l = 0; l < 71; ++l) { |
| const float result = out(i,j,k,l); |
| const float expected = input(i,j,k,l+0) * kernel(0) + input(i,j,k,l+1) * kernel(1) + |
| input(i,j,k,l+2) * kernel(2) + input(i,j,k,l+3) * kernel(3); |
| VERIFY_IS_APPROX(result, expected); |
| } |
| } |
| } |
| } |
| |
| cudaFree(d_input); |
| cudaFree(d_kernel); |
| cudaFree(d_out); |
| } |
| |
| template<int DataLayout> |
| void test_cuda_convolution_2d() |
| { |
| Tensor<float, 4, DataLayout> input(74,37,11,137); |
| Tensor<float, 2, DataLayout> kernel(3,4); |
| Tensor<float, 4, DataLayout> out(74,35,8,137); |
| input = input.constant(10.0f) + input.random(); |
| kernel = kernel.constant(7.0f) + kernel.random(); |
| |
| std::size_t input_bytes = input.size() * sizeof(float); |
| std::size_t kernel_bytes = kernel.size() * sizeof(float); |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_input; |
| float* d_kernel; |
| float* d_out; |
| cudaMalloc((void**)(&d_input), input_bytes); |
| cudaMalloc((void**)(&d_kernel), kernel_bytes); |
| cudaMalloc((void**)(&d_out), out_bytes); |
| |
| cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_input(d_input,74,37,11,137); |
| Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_kernel(d_kernel,3,4); |
| Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_out(d_out,74,35,8,137); |
| |
| Eigen::array<int, 2> dims(1,2); |
| gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 74; ++i) { |
| for (int j = 0; j < 35; ++j) { |
| for (int k = 0; k < 8; ++k) { |
| for (int l = 0; l < 137; ++l) { |
| const float result = out(i,j,k,l); |
| const float expected = input(i,j+0,k+0,l) * kernel(0,0) + |
| input(i,j+1,k+0,l) * kernel(1,0) + |
| input(i,j+2,k+0,l) * kernel(2,0) + |
| input(i,j+0,k+1,l) * kernel(0,1) + |
| input(i,j+1,k+1,l) * kernel(1,1) + |
| input(i,j+2,k+1,l) * kernel(2,1) + |
| input(i,j+0,k+2,l) * kernel(0,2) + |
| input(i,j+1,k+2,l) * kernel(1,2) + |
| input(i,j+2,k+2,l) * kernel(2,2) + |
| input(i,j+0,k+3,l) * kernel(0,3) + |
| input(i,j+1,k+3,l) * kernel(1,3) + |
| input(i,j+2,k+3,l) * kernel(2,3); |
| VERIFY_IS_APPROX(result, expected); |
| } |
| } |
| } |
| } |
| |
| cudaFree(d_input); |
| cudaFree(d_kernel); |
| cudaFree(d_out); |
| } |
| |
| template<int DataLayout> |
| void test_cuda_convolution_3d() |
| { |
| Tensor<float, 5, DataLayout> input(Eigen::array<int, 5>(74,37,11,137,17)); |
| Tensor<float, 3, DataLayout> kernel(3,4,2); |
| Tensor<float, 5, DataLayout> out(Eigen::array<int, 5>(74,35,8,136,17)); |
| input = input.constant(10.0f) + input.random(); |
| kernel = kernel.constant(7.0f) + kernel.random(); |
| |
| std::size_t input_bytes = input.size() * sizeof(float); |
| std::size_t kernel_bytes = kernel.size() * sizeof(float); |
| std::size_t out_bytes = out.size() * sizeof(float); |
| |
| float* d_input; |
| float* d_kernel; |
| float* d_out; |
| cudaMalloc((void**)(&d_input), input_bytes); |
| cudaMalloc((void**)(&d_kernel), kernel_bytes); |
| cudaMalloc((void**)(&d_out), out_bytes); |
| |
| cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_input(d_input,74,37,11,137,17); |
| Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_kernel(d_kernel,3,4,2); |
| Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_out(d_out,74,35,8,136,17); |
| |
| Eigen::array<int, 3> dims(1,2,3); |
| gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 74; ++i) { |
| for (int j = 0; j < 35; ++j) { |
| for (int k = 0; k < 8; ++k) { |
| for (int l = 0; l < 136; ++l) { |
| for (int m = 0; m < 17; ++m) { |
| const float result = out(i,j,k,l,m); |
| const float expected = input(i,j+0,k+0,l+0,m) * kernel(0,0,0) + |
| input(i,j+1,k+0,l+0,m) * kernel(1,0,0) + |
| input(i,j+2,k+0,l+0,m) * kernel(2,0,0) + |
| input(i,j+0,k+1,l+0,m) * kernel(0,1,0) + |
| input(i,j+1,k+1,l+0,m) * kernel(1,1,0) + |
| input(i,j+2,k+1,l+0,m) * kernel(2,1,0) + |
| input(i,j+0,k+2,l+0,m) * kernel(0,2,0) + |
| input(i,j+1,k+2,l+0,m) * kernel(1,2,0) + |
| input(i,j+2,k+2,l+0,m) * kernel(2,2,0) + |
| input(i,j+0,k+3,l+0,m) * kernel(0,3,0) + |
| input(i,j+1,k+3,l+0,m) * kernel(1,3,0) + |
| input(i,j+2,k+3,l+0,m) * kernel(2,3,0) + |
| input(i,j+0,k+0,l+1,m) * kernel(0,0,1) + |
| input(i,j+1,k+0,l+1,m) * kernel(1,0,1) + |
| input(i,j+2,k+0,l+1,m) * kernel(2,0,1) + |
| input(i,j+0,k+1,l+1,m) * kernel(0,1,1) + |
| input(i,j+1,k+1,l+1,m) * kernel(1,1,1) + |
| input(i,j+2,k+1,l+1,m) * kernel(2,1,1) + |
| input(i,j+0,k+2,l+1,m) * kernel(0,2,1) + |
| input(i,j+1,k+2,l+1,m) * kernel(1,2,1) + |
| input(i,j+2,k+2,l+1,m) * kernel(2,2,1) + |
| input(i,j+0,k+3,l+1,m) * kernel(0,3,1) + |
| input(i,j+1,k+3,l+1,m) * kernel(1,3,1) + |
| input(i,j+2,k+3,l+1,m) * kernel(2,3,1); |
| VERIFY_IS_APPROX(result, expected); |
| } |
| } |
| } |
| } |
| } |
| |
| cudaFree(d_input); |
| cudaFree(d_kernel); |
| cudaFree(d_out); |
| } |
| |
| |
| template <typename Scalar> |
| void test_cuda_lgamma(const Scalar stddev) |
| { |
| Tensor<Scalar, 2> in(72,97); |
| in.setRandom(); |
| in *= in.constant(stddev); |
| Tensor<Scalar, 2> out(72,97); |
| out.setZero(); |
| |
| std::size_t bytes = in.size() * sizeof(Scalar); |
| |
| Scalar* d_in; |
| Scalar* d_out; |
| cudaMalloc((void**)(&d_in), bytes); |
| cudaMalloc((void**)(&d_out), bytes); |
| |
| cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97); |
| |
| gpu_out.device(gpu_device) = gpu_in.lgamma(); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 72; ++i) { |
| for (int j = 0; j < 97; ++j) { |
| VERIFY_IS_APPROX(out(i,j), (std::lgamma)(in(i,j))); |
| } |
| } |
| |
| cudaFree(d_in); |
| cudaFree(d_out); |
| } |
| |
| template <typename Scalar> |
| void test_cuda_digamma() |
| { |
| Tensor<Scalar, 1> in(7); |
| Tensor<Scalar, 1> out(7); |
| Tensor<Scalar, 1> expected_out(7); |
| out.setZero(); |
| |
| in(0) = Scalar(1); |
| in(1) = Scalar(1.5); |
| in(2) = Scalar(4); |
| in(3) = Scalar(-10.5); |
| in(4) = Scalar(10000.5); |
| in(5) = Scalar(0); |
| in(6) = Scalar(-1); |
| |
| expected_out(0) = Scalar(-0.5772156649015329); |
| expected_out(1) = Scalar(0.03648997397857645); |
| expected_out(2) = Scalar(1.2561176684318); |
| expected_out(3) = Scalar(2.398239129535781); |
| expected_out(4) = Scalar(9.210340372392849); |
| expected_out(5) = std::numeric_limits<Scalar>::infinity(); |
| expected_out(6) = std::numeric_limits<Scalar>::infinity(); |
| |
| std::size_t bytes = in.size() * sizeof(Scalar); |
| |
| Scalar* d_in; |
| Scalar* d_out; |
| cudaMalloc((void**)(&d_in), bytes); |
| cudaMalloc((void**)(&d_out), bytes); |
| |
| cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in(d_in, 7); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 7); |
| |
| gpu_out.device(gpu_device) = gpu_in.digamma(); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 5; ++i) { |
| VERIFY_IS_APPROX(out(i), expected_out(i)); |
| } |
| for (int i = 5; i < 7; ++i) { |
| VERIFY_IS_EQUAL(out(i), expected_out(i)); |
| } |
| |
| cudaFree(d_in); |
| cudaFree(d_out); |
| } |
| |
| template <typename Scalar> |
| void test_cuda_zeta() |
| { |
| Tensor<Scalar, 1> in_x(6); |
| Tensor<Scalar, 1> in_q(6); |
| Tensor<Scalar, 1> out(6); |
| Tensor<Scalar, 1> expected_out(6); |
| out.setZero(); |
| |
| in_x(0) = Scalar(1); |
| in_x(1) = Scalar(1.5); |
| in_x(2) = Scalar(4); |
| in_x(3) = Scalar(-10.5); |
| in_x(4) = Scalar(10000.5); |
| in_x(5) = Scalar(3); |
| |
| in_q(0) = Scalar(1.2345); |
| in_q(1) = Scalar(2); |
| in_q(2) = Scalar(1.5); |
| in_q(3) = Scalar(3); |
| in_q(4) = Scalar(1.0001); |
| in_q(5) = Scalar(-2.5); |
| |
| expected_out(0) = std::numeric_limits<Scalar>::infinity(); |
| expected_out(1) = Scalar(1.61237534869); |
| expected_out(2) = Scalar(0.234848505667); |
| expected_out(3) = Scalar(1.03086757337e-5); |
| expected_out(4) = Scalar(0.367879440865); |
| expected_out(5) = Scalar(0.054102025820864097); |
| |
| std::size_t bytes = in_x.size() * sizeof(Scalar); |
| |
| Scalar* d_in_x; |
| Scalar* d_in_q; |
| Scalar* d_out; |
| cudaMalloc((void**)(&d_in_x), bytes); |
| cudaMalloc((void**)(&d_in_q), bytes); |
| cudaMalloc((void**)(&d_out), bytes); |
| |
| cudaMemcpy(d_in_x, in_x.data(), bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_in_q, in_q.data(), bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 6); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_q(d_in_q, 6); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 6); |
| |
| gpu_out.device(gpu_device) = gpu_in_x.zeta(gpu_in_q); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| VERIFY_IS_EQUAL(out(0), expected_out(0)); |
| VERIFY((std::isnan)(out(3))); |
| |
| for (int i = 1; i < 6; ++i) { |
| if (i != 3) { |
| VERIFY_IS_APPROX(out(i), expected_out(i)); |
| } |
| } |
| |
| cudaFree(d_in_x); |
| cudaFree(d_in_q); |
| cudaFree(d_out); |
| } |
| |
| template <typename Scalar> |
| void test_cuda_polygamma() |
| { |
| Tensor<Scalar, 1> in_x(7); |
| Tensor<Scalar, 1> in_n(7); |
| Tensor<Scalar, 1> out(7); |
| Tensor<Scalar, 1> expected_out(7); |
| out.setZero(); |
| |
| in_n(0) = Scalar(1); |
| in_n(1) = Scalar(1); |
| in_n(2) = Scalar(1); |
| in_n(3) = Scalar(17); |
| in_n(4) = Scalar(31); |
| in_n(5) = Scalar(28); |
| in_n(6) = Scalar(8); |
| |
| in_x(0) = Scalar(2); |
| in_x(1) = Scalar(3); |
| in_x(2) = Scalar(25.5); |
| in_x(3) = Scalar(4.7); |
| in_x(4) = Scalar(11.8); |
| in_x(5) = Scalar(17.7); |
| in_x(6) = Scalar(30.2); |
| |
| expected_out(0) = Scalar(0.644934066848); |
| expected_out(1) = Scalar(0.394934066848); |
| expected_out(2) = Scalar(0.0399946696496); |
| expected_out(3) = Scalar(293.334565435); |
| expected_out(4) = Scalar(0.445487887616); |
| expected_out(5) = Scalar(-2.47810300902e-07); |
| expected_out(6) = Scalar(-8.29668781082e-09); |
| |
| std::size_t bytes = in_x.size() * sizeof(Scalar); |
| |
| Scalar* d_in_x; |
| Scalar* d_in_n; |
| Scalar* d_out; |
| cudaMalloc((void**)(&d_in_x), bytes); |
| cudaMalloc((void**)(&d_in_n), bytes); |
| cudaMalloc((void**)(&d_out), bytes); |
| |
| cudaMemcpy(d_in_x, in_x.data(), bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_in_n, in_n.data(), bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 7); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_n(d_in_n, 7); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 7); |
| |
| gpu_out.device(gpu_device) = gpu_in_n.polygamma(gpu_in_x); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 7; ++i) { |
| VERIFY_IS_APPROX(out(i), expected_out(i)); |
| } |
| |
| cudaFree(d_in_x); |
| cudaFree(d_in_n); |
| cudaFree(d_out); |
| } |
| |
| template <typename Scalar> |
| void test_cuda_igamma() |
| { |
| Tensor<Scalar, 2> a(6, 6); |
| Tensor<Scalar, 2> x(6, 6); |
| Tensor<Scalar, 2> out(6, 6); |
| out.setZero(); |
| |
| Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)}; |
| Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)}; |
| |
| for (int i = 0; i < 6; ++i) { |
| for (int j = 0; j < 6; ++j) { |
| a(i, j) = a_s[i]; |
| x(i, j) = x_s[j]; |
| } |
| } |
| |
| Scalar nan = std::numeric_limits<Scalar>::quiet_NaN(); |
| Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan}, |
| {0.0, 0.6321205588285578, 0.7768698398515702, |
| 0.9816843611112658, 9.999500016666262e-05, 1.0}, |
| {0.0, 0.4275932955291202, 0.608374823728911, |
| 0.9539882943107686, 7.522076445089201e-07, 1.0}, |
| {0.0, 0.01898815687615381, 0.06564245437845008, |
| 0.5665298796332909, 4.166333347221828e-18, 1.0}, |
| {0.0, 0.9999780593618628, 0.9999899967080838, |
| 0.9999996219837988, 0.9991370418689945, 1.0}, |
| {0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}}; |
| |
| |
| |
| std::size_t bytes = a.size() * sizeof(Scalar); |
| |
| Scalar* d_a; |
| Scalar* d_x; |
| Scalar* d_out; |
| assert(cudaMalloc((void**)(&d_a), bytes) == cudaSuccess); |
| assert(cudaMalloc((void**)(&d_x), bytes) == cudaSuccess); |
| assert(cudaMalloc((void**)(&d_out), bytes) == cudaSuccess); |
| |
| cudaMemcpy(d_a, a.data(), bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_x, x.data(), bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6); |
| |
| gpu_out.device(gpu_device) = gpu_a.igamma(gpu_x); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 6; ++i) { |
| for (int j = 0; j < 6; ++j) { |
| if ((std::isnan)(igamma_s[i][j])) { |
| VERIFY((std::isnan)(out(i, j))); |
| } else { |
| VERIFY_IS_APPROX(out(i, j), igamma_s[i][j]); |
| } |
| } |
| } |
| |
| cudaFree(d_a); |
| cudaFree(d_x); |
| cudaFree(d_out); |
| } |
| |
| template <typename Scalar> |
| void test_cuda_igammac() |
| { |
| Tensor<Scalar, 2> a(6, 6); |
| Tensor<Scalar, 2> x(6, 6); |
| Tensor<Scalar, 2> out(6, 6); |
| out.setZero(); |
| |
| Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)}; |
| Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)}; |
| |
| for (int i = 0; i < 6; ++i) { |
| for (int j = 0; j < 6; ++j) { |
| a(i, j) = a_s[i]; |
| x(i, j) = x_s[j]; |
| } |
| } |
| |
| Scalar nan = std::numeric_limits<Scalar>::quiet_NaN(); |
| Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan}, |
| {1.0, 0.36787944117144233, 0.22313016014842982, |
| 0.018315638888734182, 0.9999000049998333, 0.0}, |
| {1.0, 0.5724067044708798, 0.3916251762710878, |
| 0.04601170568923136, 0.9999992477923555, 0.0}, |
| {1.0, 0.9810118431238462, 0.9343575456215499, |
| 0.4334701203667089, 1.0, 0.0}, |
| {1.0, 2.1940638138146658e-05, 1.0003291916285e-05, |
| 3.7801620118431334e-07, 0.0008629581310054535, |
| 0.0}, |
| {1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}}; |
| |
| std::size_t bytes = a.size() * sizeof(Scalar); |
| |
| Scalar* d_a; |
| Scalar* d_x; |
| Scalar* d_out; |
| cudaMalloc((void**)(&d_a), bytes); |
| cudaMalloc((void**)(&d_x), bytes); |
| cudaMalloc((void**)(&d_out), bytes); |
| |
| cudaMemcpy(d_a, a.data(), bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_x, x.data(), bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_a(d_a, 6, 6); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_x(d_x, 6, 6); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 6, 6); |
| |
| gpu_out.device(gpu_device) = gpu_a.igammac(gpu_x); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 6; ++i) { |
| for (int j = 0; j < 6; ++j) { |
| if ((std::isnan)(igammac_s[i][j])) { |
| VERIFY((std::isnan)(out(i, j))); |
| } else { |
| VERIFY_IS_APPROX(out(i, j), igammac_s[i][j]); |
| } |
| } |
| } |
| |
| cudaFree(d_a); |
| cudaFree(d_x); |
| cudaFree(d_out); |
| } |
| |
| template <typename Scalar> |
| void test_cuda_erf(const Scalar stddev) |
| { |
| Tensor<Scalar, 2> in(72,97); |
| in.setRandom(); |
| in *= in.constant(stddev); |
| Tensor<Scalar, 2> out(72,97); |
| out.setZero(); |
| |
| std::size_t bytes = in.size() * sizeof(Scalar); |
| |
| Scalar* d_in; |
| Scalar* d_out; |
| assert(cudaMalloc((void**)(&d_in), bytes) == cudaSuccess); |
| assert(cudaMalloc((void**)(&d_out), bytes) == cudaSuccess); |
| |
| cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97); |
| |
| gpu_out.device(gpu_device) = gpu_in.erf(); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 72; ++i) { |
| for (int j = 0; j < 97; ++j) { |
| VERIFY_IS_APPROX(out(i,j), (std::erf)(in(i,j))); |
| } |
| } |
| |
| cudaFree(d_in); |
| cudaFree(d_out); |
| } |
| |
| template <typename Scalar> |
| void test_cuda_erfc(const Scalar stddev) |
| { |
| Tensor<Scalar, 2> in(72,97); |
| in.setRandom(); |
| in *= in.constant(stddev); |
| Tensor<Scalar, 2> out(72,97); |
| out.setZero(); |
| |
| std::size_t bytes = in.size() * sizeof(Scalar); |
| |
| Scalar* d_in; |
| Scalar* d_out; |
| cudaMalloc((void**)(&d_in), bytes); |
| cudaMalloc((void**)(&d_out), bytes); |
| |
| cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97); |
| |
| gpu_out.device(gpu_device) = gpu_in.erfc(); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 0; i < 72; ++i) { |
| for (int j = 0; j < 97; ++j) { |
| VERIFY_IS_APPROX(out(i,j), (std::erfc)(in(i,j))); |
| } |
| } |
| |
| cudaFree(d_in); |
| cudaFree(d_out); |
| } |
| |
| template <typename Scalar> |
| void test_cuda_betainc() |
| { |
| Tensor<Scalar, 1> in_x(125); |
| Tensor<Scalar, 1> in_a(125); |
| Tensor<Scalar, 1> in_b(125); |
| Tensor<Scalar, 1> out(125); |
| Tensor<Scalar, 1> expected_out(125); |
| out.setZero(); |
| |
| Scalar nan = std::numeric_limits<Scalar>::quiet_NaN(); |
| |
| Array<Scalar, 1, Dynamic> x(125); |
| Array<Scalar, 1, Dynamic> a(125); |
| Array<Scalar, 1, Dynamic> b(125); |
| Array<Scalar, 1, Dynamic> v(125); |
| |
| a << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, |
| 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, |
| 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, |
| 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999, |
| 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, |
| 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, |
| 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999; |
| |
| b << 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999, |
| 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999, |
| 999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 0.0, 0.0, |
| 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999, |
| 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999, |
| 999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 0.0, 0.0, |
| 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379, |
| 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999, |
| 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379, |
| 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999, |
| 999.999, 999.999, 999.999; |
| |
| x << -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, |
| 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, |
| 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, |
| 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, |
| 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, |
| -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, |
| 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, |
| 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, |
| 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1; |
| |
| v << nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, |
| nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, |
| nan, nan, 0.47972119876364683, 0.5, 0.5202788012363533, nan, nan, |
| 0.9518683957740043, 0.9789663010413743, 0.9931729188073435, nan, nan, |
| 0.999995949033062, 0.9999999999993698, 0.9999999999999999, nan, nan, |
| 0.9999999999999999, 0.9999999999999999, 0.9999999999999999, nan, nan, nan, |
| nan, nan, nan, nan, 0.006827081192655869, 0.0210336989586256, |
| 0.04813160422599567, nan, nan, 0.20014344256217678, 0.5000000000000001, |
| 0.7998565574378232, nan, nan, 0.9991401428435834, 0.999999999698403, |
| 0.9999999999999999, nan, nan, 0.9999999999999999, 0.9999999999999999, |
| 0.9999999999999999, nan, nan, nan, nan, nan, nan, nan, |
| 1.0646600232370887e-25, 6.301722877826246e-13, 4.050966937974938e-06, nan, |
| nan, 7.864342668429763e-23, 3.015969667594166e-10, 0.0008598571564165444, |
| nan, nan, 6.031987710123844e-08, 0.5000000000000007, 0.9999999396801229, |
| nan, nan, 0.9999999999999999, 0.9999999999999999, 0.9999999999999999, nan, |
| nan, nan, nan, nan, nan, nan, 0.0, 7.029920380986636e-306, |
| 2.2450728208591345e-101, nan, nan, 0.0, 9.275871147869727e-302, |
| 1.2232913026152827e-97, nan, nan, 0.0, 3.0891393081932924e-252, |
| 2.9303043666183996e-60, nan, nan, 2.248913486879199e-196, |
| 0.5000000000004947, 0.9999999999999999, nan; |
| |
| for (int i = 0; i < 125; ++i) { |
| in_x(i) = x(i); |
| in_a(i) = a(i); |
| in_b(i) = b(i); |
| expected_out(i) = v(i); |
| } |
| |
| std::size_t bytes = in_x.size() * sizeof(Scalar); |
| |
| Scalar* d_in_x; |
| Scalar* d_in_a; |
| Scalar* d_in_b; |
| Scalar* d_out; |
| cudaMalloc((void**)(&d_in_x), bytes); |
| cudaMalloc((void**)(&d_in_a), bytes); |
| cudaMalloc((void**)(&d_in_b), bytes); |
| cudaMalloc((void**)(&d_out), bytes); |
| |
| cudaMemcpy(d_in_x, in_x.data(), bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_in_a, in_a.data(), bytes, cudaMemcpyHostToDevice); |
| cudaMemcpy(d_in_b, in_b.data(), bytes, cudaMemcpyHostToDevice); |
| |
| Eigen::CudaStreamDevice stream; |
| Eigen::GpuDevice gpu_device(&stream); |
| |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_x(d_in_x, 125); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_a(d_in_a, 125); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_in_b(d_in_b, 125); |
| Eigen::TensorMap<Eigen::Tensor<Scalar, 1> > gpu_out(d_out, 125); |
| |
| gpu_out.device(gpu_device) = betainc(gpu_in_a, gpu_in_b, gpu_in_x); |
| |
| assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); |
| assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); |
| |
| for (int i = 1; i < 125; ++i) { |
| if ((std::isnan)(expected_out(i))) { |
| VERIFY((std::isnan)(out(i))); |
| } else { |
| VERIFY_IS_APPROX(out(i), expected_out(i)); |
| } |
| } |
| |
| cudaFree(d_in_x); |
| cudaFree(d_in_a); |
| cudaFree(d_in_b); |
| cudaFree(d_out); |
| } |
| |
| |
| void test_cxx11_tensor_cuda() |
| { |
| CALL_SUBTEST_1(test_cuda_elementwise_small()); |
| CALL_SUBTEST_1(test_cuda_elementwise()); |
| CALL_SUBTEST_1(test_cuda_props()); |
| CALL_SUBTEST_1(test_cuda_reduction()); |
| CALL_SUBTEST_2(test_cuda_contraction<ColMajor>()); |
| CALL_SUBTEST_2(test_cuda_contraction<RowMajor>()); |
| CALL_SUBTEST_3(test_cuda_convolution_1d<ColMajor>()); |
| CALL_SUBTEST_3(test_cuda_convolution_1d<RowMajor>()); |
| CALL_SUBTEST_3(test_cuda_convolution_inner_dim_col_major_1d()); |
| CALL_SUBTEST_3(test_cuda_convolution_inner_dim_row_major_1d()); |
| CALL_SUBTEST_3(test_cuda_convolution_2d<ColMajor>()); |
| CALL_SUBTEST_3(test_cuda_convolution_2d<RowMajor>()); |
| CALL_SUBTEST_3(test_cuda_convolution_3d<ColMajor>()); |
| CALL_SUBTEST_3(test_cuda_convolution_3d<RowMajor>()); |
| |
| #if __cplusplus > 199711L |
| // std::erf, std::erfc, and so on where only added in c++11. We use them |
| // as a golden reference to validate the results produced by Eigen. Therefore |
| // we can only run these tests if we use a c++11 compiler. |
| CALL_SUBTEST_4(test_cuda_lgamma<float>(1.0f)); |
| CALL_SUBTEST_4(test_cuda_lgamma<float>(100.0f)); |
| CALL_SUBTEST_4(test_cuda_lgamma<float>(0.01f)); |
| CALL_SUBTEST_4(test_cuda_lgamma<float>(0.001f)); |
| |
| CALL_SUBTEST_4(test_cuda_lgamma<double>(1.0)); |
| CALL_SUBTEST_4(test_cuda_lgamma<double>(100.0)); |
| CALL_SUBTEST_4(test_cuda_lgamma<double>(0.01)); |
| CALL_SUBTEST_4(test_cuda_lgamma<double>(0.001)); |
| |
| CALL_SUBTEST_4(test_cuda_erf<float>(1.0f)); |
| CALL_SUBTEST_4(test_cuda_erf<float>(100.0f)); |
| CALL_SUBTEST_4(test_cuda_erf<float>(0.01f)); |
| CALL_SUBTEST_4(test_cuda_erf<float>(0.001f)); |
| |
| CALL_SUBTEST_4(test_cuda_erfc<float>(1.0f)); |
| // CALL_SUBTEST(test_cuda_erfc<float>(100.0f)); |
| CALL_SUBTEST_4(test_cuda_erfc<float>(5.0f)); // CUDA erfc lacks precision for large inputs |
| CALL_SUBTEST_4(test_cuda_erfc<float>(0.01f)); |
| CALL_SUBTEST_4(test_cuda_erfc<float>(0.001f)); |
| |
| CALL_SUBTEST_4(test_cuda_erf<double>(1.0)); |
| CALL_SUBTEST_4(test_cuda_erf<double>(100.0)); |
| CALL_SUBTEST_4(test_cuda_erf<double>(0.01)); |
| CALL_SUBTEST_4(test_cuda_erf<double>(0.001)); |
| |
| CALL_SUBTEST_4(test_cuda_erfc<double>(1.0)); |
| // CALL_SUBTEST(test_cuda_erfc<double>(100.0)); |
| CALL_SUBTEST_4(test_cuda_erfc<double>(5.0)); // CUDA erfc lacks precision for large inputs |
| CALL_SUBTEST_4(test_cuda_erfc<double>(0.01)); |
| CALL_SUBTEST_4(test_cuda_erfc<double>(0.001)); |
| |
| CALL_SUBTEST_5(test_cuda_digamma<float>()); |
| CALL_SUBTEST_5(test_cuda_digamma<double>()); |
| |
| CALL_SUBTEST_5(test_cuda_polygamma<float>()); |
| CALL_SUBTEST_5(test_cuda_polygamma<double>()); |
| |
| CALL_SUBTEST_5(test_cuda_zeta<float>()); |
| CALL_SUBTEST_5(test_cuda_zeta<double>()); |
| |
| CALL_SUBTEST_5(test_cuda_igamma<float>()); |
| CALL_SUBTEST_5(test_cuda_igammac<float>()); |
| |
| CALL_SUBTEST_5(test_cuda_igamma<double>()); |
| CALL_SUBTEST_5(test_cuda_igammac<double>()); |
| |
| CALL_SUBTEST_6(test_cuda_betainc<float>()); |
| CALL_SUBTEST_6(test_cuda_betainc<double>()); |
| #endif |
| } |