| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_UMFPACKSUPPORT_H | 
 | #define EIGEN_UMFPACKSUPPORT_H | 
 |  | 
 | // for compatibility with super old version of umfpack, | 
 | // not sure this is really needed, but this is harmless. | 
 | #ifndef SuiteSparse_long | 
 | #ifdef UF_long | 
 | #define SuiteSparse_long UF_long | 
 | #else | 
 | #error neither SuiteSparse_long nor UF_long are defined | 
 | #endif | 
 | #endif | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /* TODO extract L, extract U, compute det, etc... */ | 
 |  | 
 | // generic double/complex<double> wrapper functions: | 
 |  | 
 |  | 
 |  // Defaults | 
 | inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, int) | 
 | { umfpack_di_defaults(control); } | 
 |  | 
 | inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>, int) | 
 | { umfpack_zi_defaults(control); } | 
 |  | 
 | inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, SuiteSparse_long) | 
 | { umfpack_dl_defaults(control); } | 
 |  | 
 | inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>, SuiteSparse_long) | 
 | { umfpack_zl_defaults(control); } | 
 |  | 
 | // Report info | 
 | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, int) | 
 | { umfpack_di_report_info(control, info);} | 
 |  | 
 | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>, int) | 
 | { umfpack_zi_report_info(control, info);} | 
 |  | 
 | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, SuiteSparse_long) | 
 | { umfpack_dl_report_info(control, info);} | 
 |  | 
 | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>, SuiteSparse_long) | 
 | { umfpack_zl_report_info(control, info);} | 
 |  | 
 | // Report status | 
 | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, int) | 
 | { umfpack_di_report_status(control, status);} | 
 |  | 
 | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>, int) | 
 | { umfpack_zi_report_status(control, status);} | 
 |  | 
 | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, SuiteSparse_long) | 
 | { umfpack_dl_report_status(control, status);} | 
 |  | 
 | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>, SuiteSparse_long) | 
 | { umfpack_zl_report_status(control, status);} | 
 |  | 
 | // report control | 
 | inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, int) | 
 | { umfpack_di_report_control(control);} | 
 |  | 
 | inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>, int) | 
 | { umfpack_zi_report_control(control);} | 
 |  | 
 | inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, SuiteSparse_long) | 
 | { umfpack_dl_report_control(control);} | 
 |  | 
 | inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>, SuiteSparse_long) | 
 | { umfpack_zl_report_control(control);} | 
 |  | 
 | // Free numeric | 
 | inline void umfpack_free_numeric(void **Numeric, double, int) | 
 | { umfpack_di_free_numeric(Numeric); *Numeric = 0; } | 
 |  | 
 | inline void umfpack_free_numeric(void **Numeric, std::complex<double>, int) | 
 | { umfpack_zi_free_numeric(Numeric); *Numeric = 0; } | 
 |  | 
 | inline void umfpack_free_numeric(void **Numeric, double, SuiteSparse_long) | 
 | { umfpack_dl_free_numeric(Numeric); *Numeric = 0; } | 
 |  | 
 | inline void umfpack_free_numeric(void **Numeric, std::complex<double>, SuiteSparse_long) | 
 | { umfpack_zl_free_numeric(Numeric); *Numeric = 0; } | 
 |  | 
 | // Free symbolic | 
 | inline void umfpack_free_symbolic(void **Symbolic, double, int) | 
 | { umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; } | 
 |  | 
 | inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>, int) | 
 | { umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; } | 
 |  | 
 | inline void umfpack_free_symbolic(void **Symbolic, double, SuiteSparse_long) | 
 | { umfpack_dl_free_symbolic(Symbolic); *Symbolic = 0; } | 
 |  | 
 | inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>, SuiteSparse_long) | 
 | { umfpack_zl_free_symbolic(Symbolic); *Symbolic = 0; } | 
 |  | 
 | // Symbolic | 
 | inline int umfpack_symbolic(int n_row,int n_col, | 
 |                             const int Ap[], const int Ai[], const double Ax[], void **Symbolic, | 
 |                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); | 
 | } | 
 |  | 
 | inline int umfpack_symbolic(int n_row,int n_col, | 
 |                             const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic, | 
 |                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info); | 
 | } | 
 | inline SuiteSparse_long umfpack_symbolic( SuiteSparse_long n_row,SuiteSparse_long n_col, | 
 |                                           const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void **Symbolic, | 
 |                                           const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_dl_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_symbolic( SuiteSparse_long n_row,SuiteSparse_long n_col, | 
 |                                           const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex<double> Ax[], void **Symbolic, | 
 |                                           const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_zl_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info); | 
 | } | 
 |  | 
 | // Numeric | 
 | inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[], | 
 |                             void *Symbolic, void **Numeric, | 
 |                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); | 
 | } | 
 |  | 
 | inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[], | 
 |                             void *Symbolic, void **Numeric, | 
 |                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); | 
 | } | 
 | inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], | 
 |                                         void *Symbolic, void **Numeric, | 
 |                                         const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_dl_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex<double> Ax[], | 
 |                                         void *Symbolic, void **Numeric, | 
 |                                         const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_zl_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); | 
 | } | 
 |  | 
 | // solve | 
 | inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[], | 
 |                           double X[], const double B[], void *Numeric, | 
 |                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); | 
 | } | 
 |  | 
 | inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[], | 
 |                           std::complex<double> X[], const std::complex<double> B[], void *Numeric, | 
 |                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], | 
 |                                       double X[], const double B[], void *Numeric, | 
 |                                       const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_dl_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex<double> Ax[], | 
 |                                       std::complex<double> X[], const std::complex<double> B[], void *Numeric, | 
 |                                       const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) | 
 | { | 
 |   return umfpack_zl_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info); | 
 | } | 
 |  | 
 | // Get Lunz | 
 | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) | 
 | { | 
 |   return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); | 
 | } | 
 |  | 
 | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>) | 
 | { | 
 |   return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_get_lunz( SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col, | 
 |                                           SuiteSparse_long *nz_udiag, void *Numeric, double) | 
 | { | 
 |   return umfpack_dl_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_get_lunz( SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col, | 
 |                                           SuiteSparse_long *nz_udiag, void *Numeric, std::complex<double>) | 
 | { | 
 |   return umfpack_zl_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); | 
 | } | 
 |  | 
 | // Get Numeric | 
 | inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], | 
 |                                int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric) | 
 | { | 
 |   return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric); | 
 | } | 
 |  | 
 | inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[], | 
 |                                int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric) | 
 | { | 
 |   double& lx0_real = numext::real_ref(Lx[0]); | 
 |   double& ux0_real = numext::real_ref(Ux[0]); | 
 |   double& dx0_real = numext::real_ref(Dx[0]); | 
 |   return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q, | 
 |                                 Dx?&dx0_real:0,0,do_recip,Rs,Numeric); | 
 | } | 
 | inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], double Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], double Ux[], | 
 |                                             SuiteSparse_long P[], SuiteSparse_long Q[], double Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric) | 
 | { | 
 |   return umfpack_dl_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], std::complex<double> Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], std::complex<double> Ux[], | 
 |                                             SuiteSparse_long P[], SuiteSparse_long Q[], std::complex<double> Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric) | 
 | { | 
 |   double& lx0_real = numext::real_ref(Lx[0]); | 
 |   double& ux0_real = numext::real_ref(Ux[0]); | 
 |   double& dx0_real = numext::real_ref(Dx[0]); | 
 |   return umfpack_zl_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q, | 
 |                                 Dx?&dx0_real:0,0,do_recip,Rs,Numeric); | 
 | } | 
 |  | 
 | // Get Determinant | 
 | inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], int) | 
 | { | 
 |   return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info); | 
 | } | 
 |  | 
 | inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], int) | 
 | { | 
 |   double& mx_real = numext::real_ref(*Mx); | 
 |   return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], SuiteSparse_long) | 
 | { | 
 |   return umfpack_dl_get_determinant(Mx,Ex,NumericHandle,User_Info); | 
 | } | 
 |  | 
 | inline SuiteSparse_long umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO], SuiteSparse_long) | 
 | { | 
 |   double& mx_real = numext::real_ref(*Mx); | 
 |   return umfpack_zl_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info); | 
 | } | 
 |  | 
 |  | 
 | /** \ingroup UmfPackSupport_Module | 
 |   * \brief A sparse LU factorization and solver based on UmfPack | 
 |   * | 
 |   * This class allows to solve for A.X = B sparse linear problems via a LU factorization | 
 |   * using the UmfPack library. The sparse matrix A must be squared and full rank. | 
 |   * The vectors or matrices X and B can be either dense or sparse. | 
 |   * | 
 |   * \warning The input matrix A should be in a \b compressed and \b column-major form. | 
 |   * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. | 
 |   * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept, class SparseLU | 
 |   */ | 
 | template<typename MatrixType_> | 
 | class UmfPackLU : public SparseSolverBase<UmfPackLU<MatrixType_> > | 
 | { | 
 |   protected: | 
 |     typedef SparseSolverBase<UmfPackLU<MatrixType_> > Base; | 
 |     using Base::m_isInitialized; | 
 |   public: | 
 |     using Base::_solve_impl; | 
 |     typedef MatrixType_ MatrixType; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef typename MatrixType::StorageIndex StorageIndex; | 
 |     typedef Matrix<Scalar,Dynamic,1> Vector; | 
 |     typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | 
 |     typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | 
 |     typedef SparseMatrix<Scalar> LUMatrixType; | 
 |     typedef SparseMatrix<Scalar,ColMajor,StorageIndex> UmfpackMatrixType; | 
 |     typedef Ref<const UmfpackMatrixType, StandardCompressedFormat> UmfpackMatrixRef; | 
 |     enum { | 
 |       ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |     }; | 
 |  | 
 |   public: | 
 |  | 
 |     typedef Array<double, UMFPACK_CONTROL, 1> UmfpackControl; | 
 |     typedef Array<double, UMFPACK_INFO, 1> UmfpackInfo; | 
 |  | 
 |     UmfPackLU() | 
 |       : m_dummy(0,0), mp_matrix(m_dummy) | 
 |     { | 
 |       init(); | 
 |     } | 
 |  | 
 |     template<typename InputMatrixType> | 
 |     explicit UmfPackLU(const InputMatrixType& matrix) | 
 |       : mp_matrix(matrix) | 
 |     { | 
 |       init(); | 
 |       compute(matrix); | 
 |     } | 
 |  | 
 |     ~UmfPackLU() | 
 |     { | 
 |       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar(), StorageIndex()); | 
 |       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar(), StorageIndex()); | 
 |     } | 
 |  | 
 |     inline Index rows() const { return mp_matrix.rows(); } | 
 |     inline Index cols() const { return mp_matrix.cols(); } | 
 |  | 
 |     /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was successful, | 
 |       *          \c NumericalIssue if the matrix.appears to be negative. | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |       return m_info; | 
 |     } | 
 |  | 
 |     inline const LUMatrixType& matrixL() const | 
 |     { | 
 |       if (m_extractedDataAreDirty) extractData(); | 
 |       return m_l; | 
 |     } | 
 |  | 
 |     inline const LUMatrixType& matrixU() const | 
 |     { | 
 |       if (m_extractedDataAreDirty) extractData(); | 
 |       return m_u; | 
 |     } | 
 |  | 
 |     inline const IntColVectorType& permutationP() const | 
 |     { | 
 |       if (m_extractedDataAreDirty) extractData(); | 
 |       return m_p; | 
 |     } | 
 |  | 
 |     inline const IntRowVectorType& permutationQ() const | 
 |     { | 
 |       if (m_extractedDataAreDirty) extractData(); | 
 |       return m_q; | 
 |     } | 
 |  | 
 |     /** Computes the sparse Cholesky decomposition of \a matrix | 
 |      *  Note that the matrix should be column-major, and in compressed format for best performance. | 
 |      *  \sa SparseMatrix::makeCompressed(). | 
 |      */ | 
 |     template<typename InputMatrixType> | 
 |     void compute(const InputMatrixType& matrix) | 
 |     { | 
 |       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar(),StorageIndex()); | 
 |       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar(),StorageIndex()); | 
 |       grab(matrix.derived()); | 
 |       analyzePattern_impl(); | 
 |       factorize_impl(); | 
 |     } | 
 |  | 
 |     /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
 |       * | 
 |       * This function is particularly useful when solving for several problems having the same structure. | 
 |       * | 
 |       * \sa factorize(), compute() | 
 |       */ | 
 |     template<typename InputMatrixType> | 
 |     void analyzePattern(const InputMatrixType& matrix) | 
 |     { | 
 |       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar(),StorageIndex()); | 
 |       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar(),StorageIndex()); | 
 |  | 
 |       grab(matrix.derived()); | 
 |  | 
 |       analyzePattern_impl(); | 
 |     } | 
 |  | 
 |     /** Provides the return status code returned by UmfPack during the numeric | 
 |       * factorization. | 
 |       * | 
 |       * \sa factorize(), compute() | 
 |       */ | 
 |     inline int umfpackFactorizeReturncode() const | 
 |     { | 
 |       eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()"); | 
 |       return m_fact_errorCode; | 
 |     } | 
 |  | 
 |     /** Provides access to the control settings array used by UmfPack. | 
 |       * | 
 |       * If this array contains NaN's, the default values are used. | 
 |       * | 
 |       * See UMFPACK documentation for details. | 
 |       */ | 
 |     inline const UmfpackControl& umfpackControl() const | 
 |     { | 
 |       return m_control; | 
 |     } | 
 |  | 
 |     /** Provides access to the control settings array used by UmfPack. | 
 |       * | 
 |       * If this array contains NaN's, the default values are used. | 
 |       * | 
 |       * See UMFPACK documentation for details. | 
 |       */ | 
 |     inline UmfpackControl& umfpackControl() | 
 |     { | 
 |       return m_control; | 
 |     } | 
 |  | 
 |     /** Performs a numeric decomposition of \a matrix | 
 |       * | 
 |       * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. | 
 |       * | 
 |       * \sa analyzePattern(), compute() | 
 |       */ | 
 |     template<typename InputMatrixType> | 
 |     void factorize(const InputMatrixType& matrix) | 
 |     { | 
 |       eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); | 
 |       if(m_numeric) | 
 |         umfpack_free_numeric(&m_numeric,Scalar(),StorageIndex()); | 
 |  | 
 |       grab(matrix.derived()); | 
 |  | 
 |       factorize_impl(); | 
 |     } | 
 |  | 
 |     /** Prints the current UmfPack control settings. | 
 |       * | 
 |       * \sa umfpackControl() | 
 |       */ | 
 |     void printUmfpackControl() | 
 |     { | 
 |       umfpack_report_control(m_control.data(), Scalar(),StorageIndex()); | 
 |     } | 
 |  | 
 |     /** Prints statistics collected by UmfPack. | 
 |       * | 
 |       * \sa analyzePattern(), compute() | 
 |       */ | 
 |     void printUmfpackInfo() | 
 |     { | 
 |       eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); | 
 |       umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar(),StorageIndex()); | 
 |     } | 
 |  | 
 |     /** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical factorization). | 
 |       * | 
 |       * \sa analyzePattern(), compute() | 
 |       */ | 
 |     void printUmfpackStatus() { | 
 |       eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); | 
 |       umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar(),StorageIndex()); | 
 |     } | 
 |  | 
 |     /** \internal */ | 
 |     template<typename BDerived,typename XDerived> | 
 |     bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const; | 
 |  | 
 |     Scalar determinant() const; | 
 |  | 
 |     void extractData() const; | 
 |  | 
 |   protected: | 
 |  | 
 |     void init() | 
 |     { | 
 |       m_info                  = InvalidInput; | 
 |       m_isInitialized         = false; | 
 |       m_numeric               = 0; | 
 |       m_symbolic              = 0; | 
 |       m_extractedDataAreDirty = true; | 
 |  | 
 |       umfpack_defaults(m_control.data(), Scalar(),StorageIndex()); | 
 |     } | 
 |  | 
 |     void analyzePattern_impl() | 
 |     { | 
 |       m_fact_errorCode = umfpack_symbolic(internal::convert_index<StorageIndex>(mp_matrix.rows()), | 
 |                                           internal::convert_index<StorageIndex>(mp_matrix.cols()), | 
 |                                           mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), | 
 |                                           &m_symbolic, m_control.data(), m_umfpackInfo.data()); | 
 |  | 
 |       m_isInitialized = true; | 
 |       m_info = m_fact_errorCode ? InvalidInput : Success; | 
 |       m_analysisIsOk = true; | 
 |       m_factorizationIsOk = false; | 
 |       m_extractedDataAreDirty = true; | 
 |     } | 
 |  | 
 |     void factorize_impl() | 
 |     { | 
 |  | 
 |       m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), | 
 |                                          m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data()); | 
 |  | 
 |       m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue; | 
 |       m_factorizationIsOk = true; | 
 |       m_extractedDataAreDirty = true; | 
 |     } | 
 |  | 
 |     template<typename MatrixDerived> | 
 |     void grab(const EigenBase<MatrixDerived> &A) | 
 |     { | 
 |       mp_matrix.~UmfpackMatrixRef(); | 
 |       ::new (&mp_matrix) UmfpackMatrixRef(A.derived()); | 
 |     } | 
 |  | 
 |     void grab(const UmfpackMatrixRef &A) | 
 |     { | 
 |       if(&(A.derived()) != &mp_matrix) | 
 |       { | 
 |         mp_matrix.~UmfpackMatrixRef(); | 
 |         ::new (&mp_matrix) UmfpackMatrixRef(A); | 
 |       } | 
 |     } | 
 |  | 
 |     // cached data to reduce reallocation, etc. | 
 |     mutable LUMatrixType m_l; | 
 |     StorageIndex m_fact_errorCode; | 
 |     UmfpackControl m_control; | 
 |     mutable UmfpackInfo m_umfpackInfo; | 
 |  | 
 |     mutable LUMatrixType m_u; | 
 |     mutable IntColVectorType m_p; | 
 |     mutable IntRowVectorType m_q; | 
 |  | 
 |     UmfpackMatrixType m_dummy; | 
 |     UmfpackMatrixRef mp_matrix; | 
 |  | 
 |     void* m_numeric; | 
 |     void* m_symbolic; | 
 |  | 
 |     mutable ComputationInfo m_info; | 
 |     int m_factorizationIsOk; | 
 |     int m_analysisIsOk; | 
 |     mutable bool m_extractedDataAreDirty; | 
 |  | 
 |   private: | 
 |     UmfPackLU(const UmfPackLU& ) { } | 
 | }; | 
 |  | 
 |  | 
 | template<typename MatrixType> | 
 | void UmfPackLU<MatrixType>::extractData() const | 
 | { | 
 |   if (m_extractedDataAreDirty) | 
 |   { | 
 |     // get size of the data | 
 |     StorageIndex lnz, unz, rows, cols, nz_udiag; | 
 |     umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); | 
 |  | 
 |     // allocate data | 
 |     m_l.resize(rows,(std::min)(rows,cols)); | 
 |     m_l.resizeNonZeros(lnz); | 
 |  | 
 |     m_u.resize((std::min)(rows,cols),cols); | 
 |     m_u.resizeNonZeros(unz); | 
 |  | 
 |     m_p.resize(rows); | 
 |     m_q.resize(cols); | 
 |  | 
 |     // extract | 
 |     umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), | 
 |                         m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(), | 
 |                         m_p.data(), m_q.data(), 0, 0, 0, m_numeric); | 
 |  | 
 |     m_extractedDataAreDirty = false; | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const | 
 | { | 
 |   Scalar det; | 
 |   umfpack_get_determinant(&det, 0, m_numeric, 0, StorageIndex()); | 
 |   return det; | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | template<typename BDerived,typename XDerived> | 
 | bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const | 
 | { | 
 |   Index rhsCols = b.cols(); | 
 |   eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet"); | 
 |   eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet"); | 
 |   eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve"); | 
 |  | 
 |   Scalar* x_ptr = 0; | 
 |   Matrix<Scalar,Dynamic,1> x_tmp; | 
 |   if(x.innerStride()!=1) | 
 |   { | 
 |     x_tmp.resize(x.rows()); | 
 |     x_ptr = x_tmp.data(); | 
 |   } | 
 |   for (int j=0; j<rhsCols; ++j) | 
 |   { | 
 |     if(x.innerStride()==1) | 
 |       x_ptr = &x.col(j).coeffRef(0); | 
 |     StorageIndex errorCode = umfpack_solve(UMFPACK_A, | 
 |                                 mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), | 
 |                                 x_ptr, &b.const_cast_derived().col(j).coeffRef(0), | 
 |                                 m_numeric, m_control.data(), m_umfpackInfo.data()); | 
 |     if(x.innerStride()!=1) | 
 |       x.col(j) = x_tmp; | 
 |     if (errorCode!=0) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_UMFPACKSUPPORT_H |