| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2016 | 
 | // Mehdi Goli    Codeplay Software Ltd. | 
 | // Ralph Potter  Codeplay Software Ltd. | 
 | // Luke Iwanski  Codeplay Software Ltd. | 
 | // Contact: <eigen@codeplay.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #define EIGEN_TEST_NO_LONGDOUBLE | 
 | #define EIGEN_TEST_NO_COMPLEX | 
 |  | 
 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t | 
 | #define EIGEN_USE_SYCL | 
 | #define EIGEN_HAS_CONSTEXPR 1 | 
 |  | 
 | #include "main.h" | 
 |  | 
 | #include <unsupported/Eigen/CXX11/Tensor> | 
 |  | 
 | using Eigen::array; | 
 | using Eigen::SyclDevice; | 
 | using Eigen::Tensor; | 
 | using Eigen::TensorMap; | 
 |  | 
 | template <typename DataType, int Layout, typename DenseIndex> | 
 | static void test_sycl_simple_argmax(const Eigen::SyclDevice& sycl_device) { | 
 |   Tensor<DataType, 3, Layout, DenseIndex> in(Eigen::array<DenseIndex, 3>{{2, 2, 2}}); | 
 |   Tensor<DenseIndex, 0, Layout, DenseIndex> out_max; | 
 |   Tensor<DenseIndex, 0, Layout, DenseIndex> out_min; | 
 |   in.setRandom(); | 
 |   in *= in.constant(100.0); | 
 |   in(0, 0, 0) = -1000.0; | 
 |   in(1, 1, 1) = 1000.0; | 
 |  | 
 |   std::size_t in_bytes = in.size() * sizeof(DataType); | 
 |   std::size_t out_bytes = out_max.size() * sizeof(DenseIndex); | 
 |  | 
 |   DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes)); | 
 |   DenseIndex* d_out_max = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes)); | 
 |   DenseIndex* d_out_min = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes)); | 
 |  | 
 |   Eigen::TensorMap<Eigen::Tensor<DataType, 3, Layout, DenseIndex> > gpu_in(d_in, | 
 |                                                                            Eigen::array<DenseIndex, 3>{{2, 2, 2}}); | 
 |   Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_max(d_out_max); | 
 |   Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_min(d_out_min); | 
 |   sycl_device.memcpyHostToDevice(d_in, in.data(), in_bytes); | 
 |  | 
 |   gpu_out_max.device(sycl_device) = gpu_in.argmax(); | 
 |   gpu_out_min.device(sycl_device) = gpu_in.argmin(); | 
 |  | 
 |   sycl_device.memcpyDeviceToHost(out_max.data(), d_out_max, out_bytes); | 
 |   sycl_device.memcpyDeviceToHost(out_min.data(), d_out_min, out_bytes); | 
 |  | 
 |   VERIFY_IS_EQUAL(out_max(), 2 * 2 * 2 - 1); | 
 |   VERIFY_IS_EQUAL(out_min(), 0); | 
 |  | 
 |   sycl_device.deallocate(d_in); | 
 |   sycl_device.deallocate(d_out_max); | 
 |   sycl_device.deallocate(d_out_min); | 
 | } | 
 |  | 
 | template <typename DataType, int DataLayout, typename DenseIndex> | 
 | static void test_sycl_argmax_dim(const Eigen::SyclDevice& sycl_device) { | 
 |   DenseIndex sizeDim0 = 9; | 
 |   DenseIndex sizeDim1 = 3; | 
 |   DenseIndex sizeDim2 = 5; | 
 |   DenseIndex sizeDim3 = 7; | 
 |   Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0, sizeDim1, sizeDim2, sizeDim3); | 
 |  | 
 |   std::vector<DenseIndex> dims; | 
 |   dims.push_back(sizeDim0); | 
 |   dims.push_back(sizeDim1); | 
 |   dims.push_back(sizeDim2); | 
 |   dims.push_back(sizeDim3); | 
 |   for (DenseIndex dim = 0; dim < 4; ++dim) { | 
 |     array<DenseIndex, 3> out_shape; | 
 |     for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1]; | 
 |  | 
 |     Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape); | 
 |  | 
 |     array<DenseIndex, 4> ix; | 
 |     for (DenseIndex i = 0; i < sizeDim0; ++i) { | 
 |       for (DenseIndex j = 0; j < sizeDim1; ++j) { | 
 |         for (DenseIndex k = 0; k < sizeDim2; ++k) { | 
 |           for (DenseIndex l = 0; l < sizeDim3; ++l) { | 
 |             ix[0] = i; | 
 |             ix[1] = j; | 
 |             ix[2] = k; | 
 |             ix[3] = l; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) | 
 |             // = 10.0 | 
 |             tensor(ix) = (ix[dim] != 0) ? -1.0 : 10.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     std::size_t in_bytes = tensor.size() * sizeof(DataType); | 
 |     std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); | 
 |  | 
 |     DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes)); | 
 |     DenseIndex* d_out = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes)); | 
 |  | 
 |     Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in( | 
 |         d_in, Eigen::array<DenseIndex, 4>{{sizeDim0, sizeDim1, sizeDim2, sizeDim3}}); | 
 |     Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape); | 
 |  | 
 |     sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes); | 
 |     gpu_out.device(sycl_device) = gpu_in.argmax(dim); | 
 |     sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes); | 
 |  | 
 |     VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()), | 
 |                     size_t(sizeDim0 * sizeDim1 * sizeDim2 * sizeDim3 / tensor.dimension(dim))); | 
 |  | 
 |     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { | 
 |       // Expect max to be in the first index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); | 
 |     } | 
 |  | 
 |     sycl_device.synchronize(); | 
 |  | 
 |     for (DenseIndex i = 0; i < sizeDim0; ++i) { | 
 |       for (DenseIndex j = 0; j < sizeDim1; ++j) { | 
 |         for (DenseIndex k = 0; k < sizeDim2; ++k) { | 
 |           for (DenseIndex l = 0; l < sizeDim3; ++l) { | 
 |             ix[0] = i; | 
 |             ix[1] = j; | 
 |             ix[2] = k; | 
 |             ix[3] = l; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 | 
 |             tensor(ix) = (ix[dim] != tensor.dimension(dim) - 1) ? -1.0 : 20.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes); | 
 |     gpu_out.device(sycl_device) = gpu_in.argmax(dim); | 
 |     sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes); | 
 |  | 
 |     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { | 
 |       // Expect max to be in the last index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); | 
 |     } | 
 |     sycl_device.deallocate(d_in); | 
 |     sycl_device.deallocate(d_out); | 
 |   } | 
 | } | 
 |  | 
 | template <typename DataType, int DataLayout, typename DenseIndex> | 
 | static void test_sycl_argmin_dim(const Eigen::SyclDevice& sycl_device) { | 
 |   DenseIndex sizeDim0 = 9; | 
 |   DenseIndex sizeDim1 = 3; | 
 |   DenseIndex sizeDim2 = 5; | 
 |   DenseIndex sizeDim3 = 7; | 
 |   Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0, sizeDim1, sizeDim2, sizeDim3); | 
 |  | 
 |   std::vector<DenseIndex> dims; | 
 |   dims.push_back(sizeDim0); | 
 |   dims.push_back(sizeDim1); | 
 |   dims.push_back(sizeDim2); | 
 |   dims.push_back(sizeDim3); | 
 |   for (DenseIndex dim = 0; dim < 4; ++dim) { | 
 |     array<DenseIndex, 3> out_shape; | 
 |     for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1]; | 
 |  | 
 |     Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape); | 
 |  | 
 |     array<DenseIndex, 4> ix; | 
 |     for (DenseIndex i = 0; i < sizeDim0; ++i) { | 
 |       for (DenseIndex j = 0; j < sizeDim1; ++j) { | 
 |         for (DenseIndex k = 0; k < sizeDim2; ++k) { | 
 |           for (DenseIndex l = 0; l < sizeDim3; ++l) { | 
 |             ix[0] = i; | 
 |             ix[1] = j; | 
 |             ix[2] = k; | 
 |             ix[3] = l; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0 | 
 |             tensor(ix) = (ix[dim] != 0) ? 1.0 : -10.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     std::size_t in_bytes = tensor.size() * sizeof(DataType); | 
 |     std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); | 
 |  | 
 |     DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes)); | 
 |     DenseIndex* d_out = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes)); | 
 |  | 
 |     Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in( | 
 |         d_in, Eigen::array<DenseIndex, 4>{{sizeDim0, sizeDim1, sizeDim2, sizeDim3}}); | 
 |     Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape); | 
 |  | 
 |     sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes); | 
 |     gpu_out.device(sycl_device) = gpu_in.argmin(dim); | 
 |     sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes); | 
 |  | 
 |     VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()), | 
 |                     size_t(sizeDim0 * sizeDim1 * sizeDim2 * sizeDim3 / tensor.dimension(dim))); | 
 |  | 
 |     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { | 
 |       // Expect max to be in the first index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); | 
 |     } | 
 |  | 
 |     sycl_device.synchronize(); | 
 |  | 
 |     for (DenseIndex i = 0; i < sizeDim0; ++i) { | 
 |       for (DenseIndex j = 0; j < sizeDim1; ++j) { | 
 |         for (DenseIndex k = 0; k < sizeDim2; ++k) { | 
 |           for (DenseIndex l = 0; l < sizeDim3; ++l) { | 
 |             ix[0] = i; | 
 |             ix[1] = j; | 
 |             ix[2] = k; | 
 |             ix[3] = l; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0 | 
 |             tensor(ix) = (ix[dim] != tensor.dimension(dim) - 1) ? 1.0 : -20.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes); | 
 |     gpu_out.device(sycl_device) = gpu_in.argmin(dim); | 
 |     sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes); | 
 |  | 
 |     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { | 
 |       // Expect max to be in the last index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); | 
 |     } | 
 |     sycl_device.deallocate(d_in); | 
 |     sycl_device.deallocate(d_out); | 
 |   } | 
 | } | 
 |  | 
 | template <typename DataType, typename Device_Selector> | 
 | void sycl_argmax_test_per_device(const Device_Selector& d) { | 
 |   QueueInterface queueInterface(d); | 
 |   auto sycl_device = Eigen::SyclDevice(&queueInterface); | 
 |   test_sycl_simple_argmax<DataType, RowMajor, int64_t>(sycl_device); | 
 |   test_sycl_simple_argmax<DataType, ColMajor, int64_t>(sycl_device); | 
 |   test_sycl_argmax_dim<DataType, ColMajor, int64_t>(sycl_device); | 
 |   test_sycl_argmax_dim<DataType, RowMajor, int64_t>(sycl_device); | 
 |   test_sycl_argmin_dim<DataType, ColMajor, int64_t>(sycl_device); | 
 |   test_sycl_argmin_dim<DataType, RowMajor, int64_t>(sycl_device); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(cxx11_tensor_argmax_sycl) { | 
 |   for (const auto& device : Eigen::get_sycl_supported_devices()) { | 
 |     CALL_SUBTEST(sycl_argmax_test_per_device<float>(device)); | 
 |   } | 
 | } |