| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2016 | 
 | // Mehdi Goli    Codeplay Software Ltd. | 
 | // Ralph Potter  Codeplay Software Ltd. | 
 | // Luke Iwanski  Codeplay Software Ltd. | 
 | // Contact: <eigen@codeplay.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #define EIGEN_TEST_NO_LONGDOUBLE | 
 | #define EIGEN_TEST_NO_COMPLEX | 
 |  | 
 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t | 
 | #define EIGEN_USE_SYCL | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/CXX11/Tensor> | 
 |  | 
 | using Eigen::array; | 
 | using Eigen::SyclDevice; | 
 | using Eigen::Tensor; | 
 | using Eigen::TensorMap; | 
 |  | 
 | template <typename DataType, int DataLayout, typename IndexType> | 
 | static void test_broadcast_sycl_fixed(const Eigen::SyclDevice &sycl_device){ | 
 |  | 
 |   // BROADCAST test: | 
 |   IndexType inDim1=2; | 
 |   IndexType inDim2=3; | 
 |   IndexType inDim3=5; | 
 |   IndexType inDim4=7; | 
 |   IndexType bDim1=2; | 
 |   IndexType bDim2=3; | 
 |   IndexType bDim3=1; | 
 |   IndexType bDim4=4; | 
 |   array<IndexType, 4> in_range   = {{inDim1, inDim2, inDim3, inDim4}}; | 
 |   array<IndexType, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}}; | 
 |   array<IndexType, 4> out_range;  // = in_range * broadcasts | 
 |   for (size_t i = 0; i < out_range.size(); ++i) | 
 |     out_range[i] = in_range[i] * broadcasts[i]; | 
 |  | 
 |   Tensor<DataType, 4, DataLayout, IndexType>  input(in_range); | 
 |   Tensor<DataType, 4, DataLayout, IndexType> out(out_range); | 
 |  | 
 |   for (size_t i = 0; i < in_range.size(); ++i) | 
 |     VERIFY_IS_EQUAL(out.dimension(i), out_range[i]); | 
 |  | 
 |  | 
 |   for (IndexType i = 0; i < input.size(); ++i) | 
 |     input(i) = static_cast<DataType>(i); | 
 |  | 
 |   DataType * gpu_in_data  = static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(DataType))); | 
 |   DataType * gpu_out_data  = static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType))); | 
 |  | 
 |   TensorMap<TensorFixedSize<DataType, Sizes<2, 3, 5, 7>, DataLayout, IndexType>> gpu_in(gpu_in_data, in_range); | 
 |   TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_out(gpu_out_data, out_range); | 
 |   sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(DataType)); | 
 |   gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts); | 
 |   sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType)); | 
 |  | 
 |   for (IndexType i = 0; i < inDim1*bDim1; ++i) { | 
 |     for (IndexType j = 0; j < inDim2*bDim2; ++j) { | 
 |       for (IndexType k = 0; k < inDim3*bDim3; ++k) { | 
 |         for (IndexType l = 0; l < inDim4*bDim4; ++l) { | 
 |           VERIFY_IS_APPROX(input(i%2,j%3,k%5,l%7), out(i,j,k,l)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   printf("Broadcast Test with fixed size Passed\n"); | 
 |   sycl_device.deallocate(gpu_in_data); | 
 |   sycl_device.deallocate(gpu_out_data); | 
 | } | 
 |  | 
 | template <typename DataType, int DataLayout, typename IndexType> | 
 | static void test_broadcast_sycl(const Eigen::SyclDevice &sycl_device){ | 
 |  | 
 |   // BROADCAST test: | 
 |   IndexType inDim1=2; | 
 |   IndexType inDim2=3; | 
 |   IndexType inDim3=5; | 
 |   IndexType inDim4=7; | 
 |   IndexType bDim1=2; | 
 |   IndexType bDim2=3; | 
 |   IndexType bDim3=1; | 
 |   IndexType bDim4=4; | 
 |   array<IndexType, 4> in_range   = {{inDim1, inDim2, inDim3, inDim4}}; | 
 |   array<IndexType, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}}; | 
 |   array<IndexType, 4> out_range;  // = in_range * broadcasts | 
 |   for (size_t i = 0; i < out_range.size(); ++i) | 
 |     out_range[i] = in_range[i] * broadcasts[i]; | 
 |  | 
 |   Tensor<DataType, 4, DataLayout, IndexType>  input(in_range); | 
 |   Tensor<DataType, 4, DataLayout, IndexType> out(out_range); | 
 |  | 
 |   for (size_t i = 0; i < in_range.size(); ++i) | 
 |     VERIFY_IS_EQUAL(out.dimension(i), out_range[i]); | 
 |  | 
 |  | 
 |   for (IndexType i = 0; i < input.size(); ++i) | 
 |     input(i) = static_cast<DataType>(i); | 
 |  | 
 |   DataType * gpu_in_data  = static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(DataType))); | 
 |   DataType * gpu_out_data  = static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType))); | 
 |  | 
 |   TensorMap<Tensor<DataType, 4, DataLayout, IndexType>>  gpu_in(gpu_in_data, in_range); | 
 |   TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_out(gpu_out_data, out_range); | 
 |   sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(DataType)); | 
 |   gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts); | 
 |   sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType)); | 
 |  | 
 |   for (IndexType i = 0; i < inDim1*bDim1; ++i) { | 
 |     for (IndexType j = 0; j < inDim2*bDim2; ++j) { | 
 |       for (IndexType k = 0; k < inDim3*bDim3; ++k) { | 
 |         for (IndexType l = 0; l < inDim4*bDim4; ++l) { | 
 |           VERIFY_IS_APPROX(input(i%inDim1,j%inDim2,k%inDim3,l%inDim4), out(i,j,k,l)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   printf("Broadcast Test Passed\n"); | 
 |   sycl_device.deallocate(gpu_in_data); | 
 |   sycl_device.deallocate(gpu_out_data); | 
 | } | 
 |  | 
 | template<typename DataType> void sycl_broadcast_test_per_device(const cl::sycl::device& d){ | 
 |   std::cout << "Running on " << d.template get_info<cl::sycl::info::device::name>() << std::endl; | 
 |   QueueInterface queueInterface(d); | 
 |   auto sycl_device = Eigen::SyclDevice(&queueInterface); | 
 |   test_broadcast_sycl<DataType, RowMajor, int64_t>(sycl_device); | 
 |   test_broadcast_sycl<DataType, ColMajor, int64_t>(sycl_device); | 
 |   test_broadcast_sycl_fixed<DataType, RowMajor, int64_t>(sycl_device); | 
 |   test_broadcast_sycl_fixed<DataType, ColMajor, int64_t>(sycl_device); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(cxx11_tensor_broadcast_sycl) { | 
 |   for (const auto& device :Eigen::get_sycl_supported_devices()) { | 
 |     CALL_SUBTEST(sycl_broadcast_test_per_device<float>(device)); | 
 |   } | 
 | } |