| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2016 | 
 | // Mehdi Goli    Codeplay Software Ltd. | 
 | // Ralph Potter  Codeplay Software Ltd. | 
 | // Luke Iwanski  Codeplay Software Ltd. | 
 | // Contact: <eigen@codeplay.com> | 
 | // Benoit Steiner <benoit.steiner.goog@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #define EIGEN_TEST_NO_LONGDOUBLE | 
 | #define EIGEN_TEST_NO_COMPLEX | 
 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t | 
 | #define EIGEN_USE_SYCL | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/CXX11/Tensor> | 
 |  | 
 | using Eigen::array; | 
 | using Eigen::SyclDevice; | 
 | using Eigen::Tensor; | 
 | using Eigen::TensorMap; | 
 |  | 
 | using Eigen::Tensor; | 
 | using Eigen::RowMajor; | 
 | template <typename DataType, int DataLayout, typename IndexType> | 
 | static void test_image_op_sycl(const Eigen::SyclDevice &sycl_device) | 
 | { | 
 |   IndexType sizeDim1 = 245; | 
 |   IndexType sizeDim2 = 343; | 
 |   IndexType sizeDim3 = 577; | 
 |  | 
 |   array<IndexType, 3> input_range ={{sizeDim1, sizeDim2, sizeDim3}}; | 
 |   array<IndexType, 3> slice_range ={{sizeDim1-1, sizeDim2, sizeDim3}}; | 
 |  | 
 |   Tensor<DataType, 3,DataLayout, IndexType> tensor1(input_range); | 
 |   Tensor<DataType, 3,DataLayout, IndexType> tensor2(input_range); | 
 |   Tensor<DataType, 3, DataLayout, IndexType> tensor3(slice_range); | 
 |   Tensor<DataType, 3, DataLayout, IndexType> tensor3_cpu(slice_range); | 
 |  | 
 |  | 
 |  | 
 |   typedef Eigen::DSizes<IndexType, 3> Index3; | 
 |   Index3 strides1(1L,1L, 1L); | 
 |   Index3 indicesStart1(1L, 0L, 0L); | 
 |   Index3 indicesStop1(sizeDim1, sizeDim2, sizeDim3); | 
 |  | 
 |   Index3 strides2(1L,1L, 1L); | 
 |   Index3 indicesStart2(0L, 0L, 0L); | 
 |   Index3 indicesStop2(sizeDim1-1, sizeDim2, sizeDim3); | 
 |   Eigen::DSizes<IndexType, 3> sizes(sizeDim1-1,sizeDim2,sizeDim3); | 
 |  | 
 |   tensor1.setRandom(); | 
 |   tensor2.setRandom(); | 
 |  | 
 |  | 
 |   DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(tensor1.size()*sizeof(DataType))); | 
 |   DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType))); | 
 |   DataType* gpu_data3  = static_cast<DataType*>(sycl_device.allocate(tensor3.size()*sizeof(DataType))); | 
 |  | 
 |   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, input_range); | 
 |   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, input_range); | 
 |   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu3(gpu_data3, slice_range); | 
 |  | 
 |   sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(),(tensor1.size())*sizeof(DataType)); | 
 |   sycl_device.memcpyHostToDevice(gpu_data2, tensor2.data(),(tensor2.size())*sizeof(DataType)); | 
 |   gpu3.device(sycl_device)= gpu1.slice(indicesStart1, sizes) - gpu2.slice(indicesStart2, sizes); | 
 |   sycl_device.memcpyDeviceToHost(tensor3.data(), gpu_data3,(tensor3.size())*sizeof(DataType)); | 
 |  | 
 |   tensor3_cpu = tensor1.stridedSlice(indicesStart1,indicesStop1,strides1) - tensor2.stridedSlice(indicesStart2,indicesStop2,strides2); | 
 |  | 
 |  | 
 |   for (IndexType i = 0; i <slice_range[0] ; ++i) { | 
 |     for (IndexType j = 0; j < slice_range[1]; ++j) { | 
 |       for (IndexType k = 0; k < slice_range[2]; ++k) { | 
 |         VERIFY_IS_EQUAL(tensor3_cpu(i,j,k), tensor3(i,j,k)); | 
 |       } | 
 |     } | 
 |   } | 
 |   sycl_device.deallocate(gpu_data1); | 
 |   sycl_device.deallocate(gpu_data2); | 
 |   sycl_device.deallocate(gpu_data3); | 
 | } | 
 |  | 
 |  | 
 | template<typename DataType, typename dev_Selector> void sycl_computing_test_per_device(dev_Selector s){ | 
 |   QueueInterface queueInterface(s); | 
 |   auto sycl_device = Eigen::SyclDevice(&queueInterface); | 
 |   test_image_op_sycl<DataType, RowMajor, int64_t>(sycl_device); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(cxx11_tensor_image_op_sycl) { | 
 |   for (const auto& device :Eigen::get_sycl_supported_devices()) {  | 
 |    CALL_SUBTEST(sycl_computing_test_per_device<float>(device)); | 
 | #ifdef EIGEN_SYCL_DOUBLE_SUPPORT | 
 |    CALL_SUBTEST(sycl_computing_test_per_device<double>(device)); | 
 | #endif | 
 |   } | 
 | } |