| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2016 | 
 | // Mehdi Goli    Codeplay Software Ltd. | 
 | // Ralph Potter  Codeplay Software Ltd. | 
 | // Luke Iwanski  Codeplay Software Ltd. | 
 | // Contact: <eigen@codeplay.com> | 
 | // Benoit Steiner <benoit.steiner.goog@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #define EIGEN_TEST_NO_LONGDOUBLE | 
 | #define EIGEN_TEST_NO_COMPLEX | 
 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t | 
 | #define EIGEN_USE_SYCL | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/CXX11/Tensor> | 
 |  | 
 | using Eigen::array; | 
 | using Eigen::SyclDevice; | 
 | using Eigen::Tensor; | 
 | using Eigen::TensorMap; | 
 |  | 
 | using Eigen::Tensor; | 
 | using Eigen::RowMajor; | 
 | template <typename DataType, int DataLayout, typename IndexType> | 
 | static void test_tanh_sycl(const Eigen::SyclDevice &sycl_device) | 
 | { | 
 |  | 
 |   IndexType sizeDim1 = 4; | 
 |   IndexType sizeDim2 = 4; | 
 |   IndexType sizeDim3 = 1; | 
 |   array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; | 
 |   Tensor<DataType, 3, DataLayout, IndexType> in(tensorRange); | 
 |   Tensor<DataType, 3, DataLayout, IndexType> out(tensorRange); | 
 |   Tensor<DataType, 3, DataLayout, IndexType> out_cpu(tensorRange); | 
 |  | 
 |   in = in.random(); | 
 |  | 
 |   DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(in.size()*sizeof(DataType))); | 
 |   DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType))); | 
 |  | 
 |   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange); | 
 |   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange); | 
 |  | 
 |   sycl_device.memcpyHostToDevice(gpu_data1, in.data(),(in.size())*sizeof(DataType)); | 
 |   gpu2.device(sycl_device) = gpu1.tanh(); | 
 |   sycl_device.memcpyDeviceToHost(out.data(), gpu_data2,(out.size())*sizeof(DataType)); | 
 |  | 
 |   out_cpu=in.tanh(); | 
 |  | 
 |   for (int i = 0; i < in.size(); ++i) { | 
 |     VERIFY_IS_APPROX(out(i), out_cpu(i)); | 
 |   } | 
 | } | 
 | template <typename DataType, int DataLayout, typename IndexType> | 
 | static void test_sigmoid_sycl(const Eigen::SyclDevice &sycl_device) | 
 | { | 
 |  | 
 |   IndexType sizeDim1 = 4; | 
 |   IndexType sizeDim2 = 4; | 
 |   IndexType sizeDim3 = 1; | 
 |   array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; | 
 |   Tensor<DataType, 3, DataLayout, IndexType> in(tensorRange); | 
 |   Tensor<DataType, 3, DataLayout, IndexType> out(tensorRange); | 
 |   Tensor<DataType, 3, DataLayout, IndexType> out_cpu(tensorRange); | 
 |  | 
 |   in = in.random(); | 
 |  | 
 |   DataType* gpu_data1  = static_cast<DataType*>(sycl_device.allocate(in.size()*sizeof(DataType))); | 
 |   DataType* gpu_data2  = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType))); | 
 |  | 
 |   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange); | 
 |   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange); | 
 |  | 
 |   sycl_device.memcpyHostToDevice(gpu_data1, in.data(),(in.size())*sizeof(DataType)); | 
 |   gpu2.device(sycl_device) = gpu1.sigmoid(); | 
 |   sycl_device.memcpyDeviceToHost(out.data(), gpu_data2,(out.size())*sizeof(DataType)); | 
 |  | 
 |   out_cpu=in.sigmoid(); | 
 |  | 
 |   for (int i = 0; i < in.size(); ++i) { | 
 |     VERIFY_IS_APPROX(out(i), out_cpu(i)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | template<typename DataType, typename dev_Selector> void sycl_computing_test_per_device(dev_Selector s){ | 
 |   QueueInterface queueInterface(s); | 
 |   auto sycl_device = Eigen::SyclDevice(&queueInterface); | 
 |   test_tanh_sycl<DataType, RowMajor, int64_t>(sycl_device); | 
 |   test_tanh_sycl<DataType, ColMajor, int64_t>(sycl_device); | 
 |   test_sigmoid_sycl<DataType, RowMajor, int64_t>(sycl_device); | 
 |   test_sigmoid_sycl<DataType, ColMajor, int64_t>(sycl_device); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(cxx11_tensor_math_sycl) { | 
 |   for (const auto& device :Eigen::get_sycl_supported_devices()) { | 
 |     CALL_SUBTEST(sycl_computing_test_per_device<float>(device)); | 
 |   } | 
 | } |