| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2016 | 
 | // Mehdi Goli    Codeplay Software Ltd. | 
 | // Ralph Potter  Codeplay Software Ltd. | 
 | // Luke Iwanski  Codeplay Software Ltd. | 
 | // Contact: <eigen@codeplay.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #define EIGEN_TEST_NO_LONGDOUBLE | 
 | #define EIGEN_TEST_NO_COMPLEX | 
 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t | 
 | #define EIGEN_USE_SYCL | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/CXX11/Tensor> | 
 |  | 
 | using Eigen::Tensor; | 
 | typedef Tensor<float, 1>::DimensionPair DimPair; | 
 |  | 
 | template <typename DataType, int DataLayout, typename IndexType> | 
 | void test_sycl_cumsum(const Eigen::SyclDevice& sycl_device, IndexType m_size, | 
 |                       IndexType k_size, IndexType n_size, int consume_dim, | 
 |                       bool exclusive) { | 
 |   static const DataType error_threshold = 1e-4f; | 
 |   std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size | 
 |             << " consume_dim : " << consume_dim << ")" << std::endl; | 
 |   Tensor<DataType, 3, DataLayout, IndexType> t_input(m_size, k_size, n_size); | 
 |   Tensor<DataType, 3, DataLayout, IndexType> t_result(m_size, k_size, n_size); | 
 |   Tensor<DataType, 3, DataLayout, IndexType> t_result_gpu(m_size, k_size, | 
 |                                                           n_size); | 
 |  | 
 |   t_input.setRandom(); | 
 |   std::size_t t_input_bytes = t_input.size() * sizeof(DataType); | 
 |   std::size_t t_result_bytes = t_result.size() * sizeof(DataType); | 
 |  | 
 |   DataType* gpu_data_in = | 
 |       static_cast<DataType*>(sycl_device.allocate(t_input_bytes)); | 
 |   DataType* gpu_data_out = | 
 |       static_cast<DataType*>(sycl_device.allocate(t_result_bytes)); | 
 |  | 
 |   array<IndexType, 3> tensorRange = {{m_size, k_size, n_size}}; | 
 |   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_t_input( | 
 |       gpu_data_in, tensorRange); | 
 |   TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_t_result( | 
 |       gpu_data_out, tensorRange); | 
 |   sycl_device.memcpyHostToDevice(gpu_data_in, t_input.data(), t_input_bytes); | 
 |   sycl_device.memcpyHostToDevice(gpu_data_out, t_input.data(), t_input_bytes); | 
 |  | 
 |   gpu_t_result.device(sycl_device) = gpu_t_input.cumsum(consume_dim, exclusive); | 
 |  | 
 |   t_result = t_input.cumsum(consume_dim, exclusive); | 
 |  | 
 |   sycl_device.memcpyDeviceToHost(t_result_gpu.data(), gpu_data_out, | 
 |                                  t_result_bytes); | 
 |   sycl_device.synchronize(); | 
 |  | 
 |   for (IndexType i = 0; i < t_result.size(); i++) { | 
 |     if (static_cast<DataType>(std::fabs(static_cast<DataType>( | 
 |             t_result(i) - t_result_gpu(i)))) < error_threshold) { | 
 |       continue; | 
 |     } | 
 |     if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), | 
 |                                   error_threshold)) { | 
 |       continue; | 
 |     } | 
 |     std::cout << "mismatch detected at index " << i << " CPU : " << t_result(i) | 
 |               << " vs SYCL : " << t_result_gpu(i) << std::endl; | 
 |     assert(false); | 
 |   } | 
 |   sycl_device.deallocate(gpu_data_in); | 
 |   sycl_device.deallocate(gpu_data_out); | 
 | } | 
 |  | 
 | template <typename DataType, typename Dev> | 
 | void sycl_scan_test_exclusive_dim0_per_device(const Dev& sycl_device) { | 
 |   test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 2049, 1023, 127, 0, | 
 |                                                 true); | 
 |   test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 2049, 1023, 127, 0, | 
 |                                                 true); | 
 | } | 
 | template <typename DataType, typename Dev> | 
 | void sycl_scan_test_exclusive_dim1_per_device(const Dev& sycl_device) { | 
 |   test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 2049, 127, 1, | 
 |                                                 true); | 
 |   test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 2049, 127, 1, | 
 |                                                 true); | 
 | } | 
 | template <typename DataType, typename Dev> | 
 | void sycl_scan_test_exclusive_dim2_per_device(const Dev& sycl_device) { | 
 |   test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 127, 2049, 2, | 
 |                                                 true); | 
 |   test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 127, 2049, 2, | 
 |                                                 true); | 
 | } | 
 | template <typename DataType, typename Dev> | 
 | void sycl_scan_test_inclusive_dim0_per_device(const Dev& sycl_device) { | 
 |   test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 2049, 1023, 127, 0, | 
 |                                                 false); | 
 |   test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 2049, 1023, 127, 0, | 
 |                                                 false); | 
 | } | 
 | template <typename DataType, typename Dev> | 
 | void sycl_scan_test_inclusive_dim1_per_device(const Dev& sycl_device) { | 
 |   test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 2049, 127, 1, | 
 |                                                 false); | 
 |   test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 2049, 127, 1, | 
 |                                                 false); | 
 | } | 
 | template <typename DataType, typename Dev> | 
 | void sycl_scan_test_inclusive_dim2_per_device(const Dev& sycl_device) { | 
 |   test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 127, 2049, 2, | 
 |                                                 false); | 
 |   test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 127, 2049, 2, | 
 |                                                 false); | 
 | } | 
 | EIGEN_DECLARE_TEST(cxx11_tensor_scan_sycl) { | 
 |   for (const auto& device : Eigen::get_sycl_supported_devices()) { | 
 |     std::cout << "Running on " | 
 |               << device.template get_info<cl::sycl::info::device::name>() | 
 |               << std::endl; | 
 |     QueueInterface queueInterface(device); | 
 |     auto sycl_device = Eigen::SyclDevice(&queueInterface); | 
 |     CALL_SUBTEST_1( | 
 |         sycl_scan_test_exclusive_dim0_per_device<float>(sycl_device)); | 
 |     CALL_SUBTEST_2( | 
 |         sycl_scan_test_exclusive_dim1_per_device<float>(sycl_device)); | 
 |     CALL_SUBTEST_3( | 
 |         sycl_scan_test_exclusive_dim2_per_device<float>(sycl_device)); | 
 |     CALL_SUBTEST_4( | 
 |         sycl_scan_test_inclusive_dim0_per_device<float>(sycl_device)); | 
 |     CALL_SUBTEST_5( | 
 |         sycl_scan_test_inclusive_dim1_per_device<float>(sycl_device)); | 
 |     CALL_SUBTEST_6( | 
 |         sycl_scan_test_inclusive_dim2_per_device<float>(sycl_device)); | 
 |   } | 
 | } |