| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void matrixSum(const MatrixType& m) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols); |
| |
| VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); |
| VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy |
| Scalar x = Scalar(0); |
| for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x += m1(i,j); |
| VERIFY_IS_APPROX(m1.sum(), x); |
| } |
| |
| template<typename VectorType> void vectorSum(const VectorType& w) |
| { |
| typedef typename VectorType::Scalar Scalar; |
| int size = w.size(); |
| |
| VectorType v = VectorType::Random(size); |
| for(int i = 1; i < size; i++) |
| { |
| Scalar s = Scalar(0); |
| for(int j = 0; j < i; j++) s += v[j]; |
| VERIFY_IS_APPROX(s, v.start(i).sum()); |
| } |
| |
| for(int i = 0; i < size-1; i++) |
| { |
| Scalar s = Scalar(0); |
| for(int j = i; j < size; j++) s += v[j]; |
| VERIFY_IS_APPROX(s, v.end(size-i).sum()); |
| } |
| |
| for(int i = 0; i < size/2; i++) |
| { |
| Scalar s = Scalar(0); |
| for(int j = i; j < size-i; j++) s += v[j]; |
| VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum()); |
| } |
| } |
| |
| void test_sum() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST( matrixSum(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST( matrixSum(Matrix2f()) ); |
| CALL_SUBTEST( matrixSum(Matrix4d()) ); |
| CALL_SUBTEST( matrixSum(MatrixXcf(3, 3)) ); |
| CALL_SUBTEST( matrixSum(MatrixXf(8, 12)) ); |
| CALL_SUBTEST( matrixSum(MatrixXi(8, 12)) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST( vectorSum(VectorXf(5)) ); |
| CALL_SUBTEST( vectorSum(VectorXd(10)) ); |
| CALL_SUBTEST( vectorSum(VectorXf(33)) ); |
| } |
| } |