| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_DOT_H |
| #define EIGEN_DOT_H |
| |
| template<int Index, int Size, typename Derived1, typename Derived2> |
| struct ei_dot_unroller |
| { |
| inline static void run(const Derived1 &v1, const Derived2& v2, typename Derived1::Scalar &dot) |
| { |
| ei_dot_unroller<Index-1, Size, Derived1, Derived2>::run(v1, v2, dot); |
| dot += v1.coeff(Index) * ei_conj(v2.coeff(Index)); |
| } |
| }; |
| |
| template<int Size, typename Derived1, typename Derived2> |
| struct ei_dot_unroller<0, Size, Derived1, Derived2> |
| { |
| inline static void run(const Derived1 &v1, const Derived2& v2, typename Derived1::Scalar &dot) |
| { |
| dot = v1.coeff(0) * ei_conj(v2.coeff(0)); |
| } |
| }; |
| |
| template<int Index, typename Derived1, typename Derived2> |
| struct ei_dot_unroller<Index, Dynamic, Derived1, Derived2> |
| { |
| inline static void run(const Derived1&, const Derived2&, typename Derived1::Scalar&) {} |
| }; |
| |
| // prevent buggy user code from causing an infinite recursion |
| template<int Index, typename Derived1, typename Derived2> |
| struct ei_dot_unroller<Index, 0, Derived1, Derived2> |
| { |
| inline static void run(const Derived1&, const Derived2&, typename Derived1::Scalar&) {} |
| }; |
| |
| /** \returns the dot product of *this with other. |
| * |
| * \only_for_vectors |
| * |
| * \note If the scalar type is complex numbers, then this function returns the hermitian |
| * (sesquilinear) dot product, linear in the first variable and anti-linear in the |
| * second variable. |
| * |
| * \sa norm2(), norm() |
| */ |
| template<typename Derived> |
| template<typename OtherDerived> |
| typename ei_traits<Derived>::Scalar |
| MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const |
| { |
| typedef typename Derived::Nested Nested; |
| typedef typename OtherDerived::Nested OtherNested; |
| typedef typename ei_unref<Nested>::type _Nested; |
| typedef typename ei_unref<OtherNested>::type _OtherNested; |
| Nested nested(derived()); |
| OtherNested otherNested(other.derived()); |
| |
| ei_assert(_Nested::IsVectorAtCompileTime |
| && _OtherNested::IsVectorAtCompileTime |
| && nested.size() == otherNested.size()); |
| Scalar res; |
| const bool unroll = SizeAtCompileTime |
| * (_Nested::CoeffReadCost + _OtherNested::CoeffReadCost + NumTraits<Scalar>::MulCost) |
| + (int(SizeAtCompileTime) - 1) * NumTraits<Scalar>::AddCost |
| <= EIGEN_UNROLLING_LIMIT; |
| if(unroll) |
| ei_dot_unroller<int(SizeAtCompileTime)-1, |
| unroll ? int(SizeAtCompileTime) : Dynamic, |
| _Nested, _OtherNested> |
| ::run(nested, otherNested, res); |
| else |
| { |
| res = nested.coeff(0) * ei_conj(otherNested.coeff(0)); |
| for(int i = 1; i < size(); i++) |
| res += nested.coeff(i)* ei_conj(otherNested.coeff(i)); |
| } |
| return res; |
| } |
| |
| /** \returns the squared norm of *this, i.e. the dot product of *this with itself. |
| * |
| * \only_for_vectors |
| * |
| * \sa dot(), norm() |
| */ |
| template<typename Derived> |
| inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm2() const |
| { |
| return ei_real(dot(*this)); |
| } |
| |
| /** \returns the norm of *this, i.e. the square root of the dot product of *this with itself. |
| * |
| * \only_for_vectors |
| * |
| * \sa dot(), norm2() |
| */ |
| template<typename Derived> |
| inline typename NumTraits<typename ei_traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const |
| { |
| return ei_sqrt(norm2()); |
| } |
| |
| /** \returns an expression of the quotient of *this by its own norm. |
| * |
| * \only_for_vectors |
| * |
| * \sa norm() |
| */ |
| template<typename Derived> |
| inline const typename MatrixBase<Derived>::ScalarMultipleReturnType |
| MatrixBase<Derived>::normalized() const |
| { |
| return (*this) * (RealScalar(1)/norm()); |
| } |
| |
| /** \returns true if *this is approximately orthogonal to \a other, |
| * within the precision given by \a prec. |
| * |
| * Example: \include MatrixBase_isOrtho_vector.cpp |
| * Output: \verbinclude MatrixBase_isOrtho_vector.out |
| */ |
| template<typename Derived> |
| template<typename OtherDerived> |
| bool MatrixBase<Derived>::isOrtho |
| (const MatrixBase<OtherDerived>& other, RealScalar prec) const |
| { |
| typename ei_nested<Derived,2>::type nested(derived()); |
| typename ei_nested<OtherDerived,2>::type otherNested(other.derived()); |
| return ei_abs2(nested.dot(otherNested)) <= prec * prec * nested.norm2() * otherNested.norm2(); |
| } |
| |
| /** \returns true if *this is approximately an unitary matrix, |
| * within the precision given by \a prec. In the case where the \a Scalar |
| * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. |
| * |
| * \note This can be used to check whether a family of vectors forms an orthonormal basis. |
| * Indeed, \c m.isOrtho() returns true if and only if the columns of m form an |
| * orthonormal basis. |
| * |
| * Example: \include MatrixBase_isOrtho_matrix.cpp |
| * Output: \verbinclude MatrixBase_isOrtho_matrix.out |
| */ |
| template<typename Derived> |
| bool MatrixBase<Derived>::isOrtho(RealScalar prec) const |
| { |
| typename Derived::Nested nested(derived()); |
| for(int i = 0; i < cols(); i++) |
| { |
| if(!ei_isApprox(nested.col(i).norm2(), static_cast<Scalar>(1), prec)) |
| return false; |
| for(int j = 0; j < i; j++) |
| if(!ei_isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast<Scalar>(1), prec)) |
| return false; |
| } |
| return true; |
| } |
| #endif // EIGEN_DOT_H |