| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_QUATERNION_H |
| #define EIGEN_QUATERNION_H |
| |
| template<typename _Scalar> |
| struct ei_traits<Quaternion<_Scalar> > |
| { |
| typedef _Scalar Scalar; |
| enum { |
| RowsAtCompileTime = 4, |
| ColsAtCompileTime = 1, |
| MaxRowsAtCompileTime = 4, |
| MaxColsAtCompileTime = 1, |
| Flags = ei_corrected_matrix_flags<_Scalar, 4, 0>::ret, |
| CoeffReadCost = NumTraits<Scalar>::ReadCost |
| }; |
| }; |
| |
| template<typename _Scalar> |
| class Quaternion : public MatrixBase<Quaternion<_Scalar> > |
| { |
| public: |
| |
| public: |
| |
| EIGEN_GENERIC_PUBLIC_INTERFACE(Quaternion) |
| |
| private: |
| |
| EIGEN_ALIGN_128 Scalar m_data[4]; |
| |
| inline int _rows() const { return 4; } |
| inline int _cols() const { return 1; } |
| |
| inline const Scalar& _coeff(int i, int) const { return m_data[i]; } |
| |
| inline Scalar& _coeffRef(int i, int) { return m_data[i]; } |
| |
| template<int LoadMode> |
| inline PacketScalar _packetCoeff(int row, int) const |
| { |
| ei_internal_assert(Flags & VectorizableBit); |
| if (LoadMode==Eigen::Aligned) |
| return ei_pload(&m_data[row]); |
| else |
| return ei_ploadu(&m_data[row]); |
| } |
| |
| template<int StoreMode> |
| inline void _writePacketCoeff(int row, int , const PacketScalar& x) |
| { |
| ei_internal_assert(Flags & VectorizableBit); |
| if (StoreMode==Eigen::Aligned) |
| ei_pstore(&m_data[row], x); |
| else |
| ei_pstoreu(&m_data[row], x); |
| } |
| |
| inline int _stride(void) const { return _rows(); } |
| |
| public: |
| |
| typedef Matrix<Scalar,3,1> Vector3; |
| typedef Matrix<Scalar,3,3> Matrix3; |
| |
| // FIXME what is the prefered order: w x,y,z or x,y,z,w ? |
| inline Quaternion(Scalar w = 1.0, Scalar x = 0.0, Scalar y = 0.0, Scalar z = 0.0) |
| { |
| m_data[0] = _x; |
| m_data[1] = _y; |
| m_data[2] = _z; |
| m_data[3] = _w; |
| } |
| |
| /** Constructor copying the value of the expression \a other */ |
| template<typename OtherDerived> |
| inline Quaternion(const Eigen::MatrixBase<OtherDerived>& other) |
| { |
| *this = other; |
| } |
| /** Copy constructor */ |
| inline Quaternion(const Quaternion& other) |
| { |
| *this = other; |
| } |
| |
| /** Copies the value of the expression \a other into \c *this. |
| */ |
| template<typename OtherDerived> |
| inline Quaternion& operator=(const MatrixBase<OtherDerived>& other) |
| { |
| return Base::operator=(other.derived()); |
| } |
| |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| inline Quaternion& operator=(const Quaternion& other) |
| { |
| return operator=<Quaternion>(other); |
| } |
| |
| Matrix3 toRotationMatrix(void) const; |
| template<typename Derived> |
| void fromRotationMatrix(const MatrixBase<Derived>& m); |
| template<typename Derived> |
| void fromAngleAxis (const Scalar& angle, const MatrixBase<Derived>& axis); |
| template<typename Derived1, typename Derived2> |
| Quaternion& fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
| |
| inline Quaternion operator* (const Quaternion& q) const; |
| inline Quaternion& operator*= (const Quaternion& q); |
| |
| Quaternion inverse(void) const; |
| Quaternion unitInverse(void) const; |
| |
| /** Rotation of a vector by a quaternion. |
| \remarks If the quaternion is used to rotate several points (>3) |
| then it is much more efficient to first convert it to a 3x3 Matrix. |
| Comparison of the operation cost for n transformations: |
| * Quaternion: 30n |
| * Via Matrix3: 24 + 15n |
| \todo write a small benchmark. |
| */ |
| template<typename Derived> |
| Vector3 operator* (const MatrixBase<Derived>& vec) const; |
| |
| private: |
| // TODO discard here unreliable members. |
| |
| }; |
| |
| template <typename Scalar> |
| inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const |
| { |
| return Quaternion |
| ( |
| this->w() * other.w() - this->x() * other.x() - this->y() * other.y() - this->z() * rkQ.z(), |
| this->w() * other.x() + this->x() * other.w() + this->y() * other.z() - this->z() * rkQ.y(), |
| this->w() * other.y() + this->y() * other.w() + this->z() * other.x() - this->x() * rkQ.z(), |
| this->w() * other.z() + this->z() * other.w() + this->x() * other.y() - this->y() * rkQ.x() |
| ); |
| } |
| |
| template <typename Scalar> |
| inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other) |
| { |
| return (*this = *this * other); |
| } |
| |
| template <typename Scalar> |
| inline typename Quaternion<Scalar>::Vector3 |
| Quaternion<Scalar>::operator* (const Vector3& v) const |
| { |
| // Note that this algorithm comes from the optimization by hand |
| // of the conversion to a Matrix followed by a Matrix/Vector product. |
| // It appears to be much faster than the common algorithm found |
| // in the litterature (30 versus 39 flops). On the other hand it |
| // requires two Vector3 as temporaries. |
| Vector3 uv; |
| uv = 2 * start<3>().cross(v); |
| return v + this->w() * uv + start<3>().cross(uv); |
| } |
| |
| template<typename Scalar> |
| typename Quaternion<Scalar>::Matrix3 |
| Quaternion<Scalar>::toRotationMatrix(void) const |
| { |
| Matrix3 res; |
| |
| Scalar tx = 2*this->x(); |
| Scalar ty = 2*this->y(); |
| Scalar tz = 2*this->z(); |
| Scalar twx = tx*this->w(); |
| Scalar twy = ty*this->w(); |
| Scalar twz = tz*this->w(); |
| Scalar txx = tx*this->x(); |
| Scalar txy = ty*this->x(); |
| Scalar txz = tz*this->x(); |
| Scalar tyy = ty*this->y(); |
| Scalar tyz = tz*this->y(); |
| Scalar tzz = tz*this->z(); |
| |
| res(0,0) = 1-(tyy+tzz); |
| res(0,1) = fTxy-twz; |
| res(0,2) = fTxz+twy; |
| res(1,0) = fTxy+twz; |
| res(1,1) = 1-(txx+tzz); |
| res(1,2) = tyz-twx; |
| res(2,0) = txz-twy; |
| res(2,1) = tyz+twx; |
| res(2,2) = 1-(txx+tyy); |
| |
| return res; |
| } |
| |
| template<typename Scalar> |
| template<typename Derived> |
| void Quaternion<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& m) |
| { |
| assert(Derived::RowsAtCompileTime==3 && Derived::ColsAtCompileTime==3); |
| // This algorithm comes from "Quaternion Calculus and Fast Animation", |
| // Ken Shoemake, 1987 SIGGRAPH course notes |
| Scalar t = m.trace(); |
| if (t > 0) |
| { |
| t = ei_sqrt(t + 1.0); |
| this->w() = 0.5*t; |
| t = 0.5/t; |
| this->x() = (m.coeff(2,1) - m.coeff(1,2)) * t; |
| this->y() = (m.coeff(0,2) - m.coeff(2,0)) * t; |
| this->z() = (m.coeff(1,0) - m.coeff(0,1)) * t; |
| } |
| else |
| { |
| int i = 0; |
| if (m(1,1) > m(0,0)) |
| i = 1; |
| if (m(2,2) > m(i,i)) |
| i = 2; |
| int j = (i+1)%3; |
| int k = (j+1)%3; |
| |
| t = ei_sqrt(m.coeff(i,i)-m.coeff(j,j)-m.coeff(k,k) + 1.0); |
| this->coeffRef(i) = 0.5 * t; |
| t = 0.5/t; |
| this->w() = (m.coeff(k,j)-m.coeff(j,k))*t; |
| this->coeffRef(j) = (m.coeff(j,i)+m.coeff(i,j))*t; |
| this->coeffRef(k) = (m.coeff(k,i)+m.coeff(i,k))*t; |
| } |
| } |
| |
| template<typename Scalar> |
| template<typename Derived> |
| inline void Quaternion<Scalar>::fromAngleAxis (const Scalar& angle, const MatrixBase<Derived>& axis) |
| { |
| Scalar ha = 0.5*angle; |
| this->w() = ei_cos(ha); |
| this->start<3>() = ei_sin(ha) * axis; |
| } |
| |
| /** Makes a quaternion representing the rotation between two vectors \a a and \a b. |
| * \returns a reference to the actual quaternion |
| * Note that the two input vectors are \b not assumed to be normalized. |
| */ |
| template<typename Scalar> |
| template<typename Derived1, typename Derived2> |
| Quaternion<Scalar>& Quaternion<Scalar>::fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) |
| { |
| Vector3 v0 = a.normalized(); |
| Vector3 v1 = a.normalized(); |
| Vector3 c = v0.cross(v1); |
| |
| // if the magnitude of the cross product approaches zero, |
| // we get unstable because ANY axis will do when a == +/- b |
| Scalar d = v0.dot(v1); |
| |
| // if dot == 1, vectors are the same |
| if (ei_isApprox(d,1)) |
| { |
| // set to identity |
| this->w() = 1; this->start<3>().setZero(); |
| } |
| Scalar s = ei_sqrt((1+d)*2); |
| Scalar invs = 1./s; |
| |
| this->start<3>() = c * invs; |
| this->w() = s * 0.5; |
| |
| return *this; |
| } |
| |
| template <typename Scalar> |
| inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const |
| { |
| Scalar n2 = this->norm2(); |
| if (n2 > 0) |
| return (*this) / norm; |
| } |
| else |
| { |
| // return an invalid result to flag the error |
| return this->zero(); |
| } |
| } |
| |
| template <typename Scalar> |
| inline Quaternion<Scalar> Quaternion<Scalar>::unitInverse() const |
| { |
| return Quaternion(this->w(),-this->x(),-this->y(),-this->z()); |
| } |
| |
| #endif // EIGEN_QUATERNION_H |