blob: 4df490ea3f120d7efe409a78cf7dd6ba26dd2ed9 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
template<typename _Scalar>
struct ei_traits<Quaternion<_Scalar> >
{
typedef _Scalar Scalar;
enum {
RowsAtCompileTime = 4,
ColsAtCompileTime = 1,
MaxRowsAtCompileTime = 4,
MaxColsAtCompileTime = 1,
Flags = ei_corrected_matrix_flags<_Scalar, 4, 0>::ret,
CoeffReadCost = NumTraits<Scalar>::ReadCost
};
};
template<typename _Scalar>
class Quaternion : public MatrixBase<Quaternion<_Scalar> >
{
public:
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Quaternion)
private:
EIGEN_ALIGN_128 Scalar m_data[4];
inline int _rows() const { return 4; }
inline int _cols() const { return 1; }
inline const Scalar& _coeff(int i, int) const { return m_data[i]; }
inline Scalar& _coeffRef(int i, int) { return m_data[i]; }
template<int LoadMode>
inline PacketScalar _packetCoeff(int row, int) const
{
ei_internal_assert(Flags & VectorizableBit);
if (LoadMode==Eigen::Aligned)
return ei_pload(&m_data[row]);
else
return ei_ploadu(&m_data[row]);
}
template<int StoreMode>
inline void _writePacketCoeff(int row, int , const PacketScalar& x)
{
ei_internal_assert(Flags & VectorizableBit);
if (StoreMode==Eigen::Aligned)
ei_pstore(&m_data[row], x);
else
ei_pstoreu(&m_data[row], x);
}
inline int _stride(void) const { return _rows(); }
public:
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,3,3> Matrix3;
// FIXME what is the prefered order: w x,y,z or x,y,z,w ?
inline Quaternion(Scalar w = 1.0, Scalar x = 0.0, Scalar y = 0.0, Scalar z = 0.0)
{
m_data[0] = _x;
m_data[1] = _y;
m_data[2] = _z;
m_data[3] = _w;
}
/** Constructor copying the value of the expression \a other */
template<typename OtherDerived>
inline Quaternion(const Eigen::MatrixBase<OtherDerived>& other)
{
*this = other;
}
/** Copy constructor */
inline Quaternion(const Quaternion& other)
{
*this = other;
}
/** Copies the value of the expression \a other into \c *this.
*/
template<typename OtherDerived>
inline Quaternion& operator=(const MatrixBase<OtherDerived>& other)
{
return Base::operator=(other.derived());
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
inline Quaternion& operator=(const Quaternion& other)
{
return operator=<Quaternion>(other);
}
Matrix3 toRotationMatrix(void) const;
template<typename Derived>
void fromRotationMatrix(const MatrixBase<Derived>& m);
template<typename Derived>
void fromAngleAxis (const Scalar& angle, const MatrixBase<Derived>& axis);
template<typename Derived1, typename Derived2>
Quaternion& fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
inline Quaternion operator* (const Quaternion& q) const;
inline Quaternion& operator*= (const Quaternion& q);
Quaternion inverse(void) const;
Quaternion unitInverse(void) const;
/** Rotation of a vector by a quaternion.
\remarks If the quaternion is used to rotate several points (>3)
then it is much more efficient to first convert it to a 3x3 Matrix.
Comparison of the operation cost for n transformations:
* Quaternion: 30n
* Via Matrix3: 24 + 15n
\todo write a small benchmark.
*/
template<typename Derived>
Vector3 operator* (const MatrixBase<Derived>& vec) const;
private:
// TODO discard here unreliable members.
};
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
{
return Quaternion
(
this->w() * other.w() - this->x() * other.x() - this->y() * other.y() - this->z() * rkQ.z(),
this->w() * other.x() + this->x() * other.w() + this->y() * other.z() - this->z() * rkQ.y(),
this->w() * other.y() + this->y() * other.w() + this->z() * other.x() - this->x() * rkQ.z(),
this->w() * other.z() + this->z() * other.w() + this->x() * other.y() - this->y() * rkQ.x()
);
}
template <typename Scalar>
inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
{
return (*this = *this * other);
}
template <typename Scalar>
inline typename Quaternion<Scalar>::Vector3
Quaternion<Scalar>::operator* (const Vector3& v) const
{
// Note that this algorithm comes from the optimization by hand
// of the conversion to a Matrix followed by a Matrix/Vector product.
// It appears to be much faster than the common algorithm found
// in the litterature (30 versus 39 flops). On the other hand it
// requires two Vector3 as temporaries.
Vector3 uv;
uv = 2 * start<3>().cross(v);
return v + this->w() * uv + start<3>().cross(uv);
}
template<typename Scalar>
typename Quaternion<Scalar>::Matrix3
Quaternion<Scalar>::toRotationMatrix(void) const
{
Matrix3 res;
Scalar tx = 2*this->x();
Scalar ty = 2*this->y();
Scalar tz = 2*this->z();
Scalar twx = tx*this->w();
Scalar twy = ty*this->w();
Scalar twz = tz*this->w();
Scalar txx = tx*this->x();
Scalar txy = ty*this->x();
Scalar txz = tz*this->x();
Scalar tyy = ty*this->y();
Scalar tyz = tz*this->y();
Scalar tzz = tz*this->z();
res(0,0) = 1-(tyy+tzz);
res(0,1) = fTxy-twz;
res(0,2) = fTxz+twy;
res(1,0) = fTxy+twz;
res(1,1) = 1-(txx+tzz);
res(1,2) = tyz-twx;
res(2,0) = txz-twy;
res(2,1) = tyz+twx;
res(2,2) = 1-(txx+tyy);
return res;
}
template<typename Scalar>
template<typename Derived>
void Quaternion<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& m)
{
assert(Derived::RowsAtCompileTime==3 && Derived::ColsAtCompileTime==3);
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = m.trace();
if (t > 0)
{
t = ei_sqrt(t + 1.0);
this->w() = 0.5*t;
t = 0.5/t;
this->x() = (m.coeff(2,1) - m.coeff(1,2)) * t;
this->y() = (m.coeff(0,2) - m.coeff(2,0)) * t;
this->z() = (m.coeff(1,0) - m.coeff(0,1)) * t;
}
else
{
int i = 0;
if (m(1,1) > m(0,0))
i = 1;
if (m(2,2) > m(i,i))
i = 2;
int j = (i+1)%3;
int k = (j+1)%3;
t = ei_sqrt(m.coeff(i,i)-m.coeff(j,j)-m.coeff(k,k) + 1.0);
this->coeffRef(i) = 0.5 * t;
t = 0.5/t;
this->w() = (m.coeff(k,j)-m.coeff(j,k))*t;
this->coeffRef(j) = (m.coeff(j,i)+m.coeff(i,j))*t;
this->coeffRef(k) = (m.coeff(k,i)+m.coeff(i,k))*t;
}
}
template<typename Scalar>
template<typename Derived>
inline void Quaternion<Scalar>::fromAngleAxis (const Scalar& angle, const MatrixBase<Derived>& axis)
{
Scalar ha = 0.5*angle;
this->w() = ei_cos(ha);
this->start<3>() = ei_sin(ha) * axis;
}
/** Makes a quaternion representing the rotation between two vectors \a a and \a b.
* \returns a reference to the actual quaternion
* Note that the two input vectors are \b not assumed to be normalized.
*/
template<typename Scalar>
template<typename Derived1, typename Derived2>
Quaternion<Scalar>& Quaternion<Scalar>::fromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
Vector3 v0 = a.normalized();
Vector3 v1 = a.normalized();
Vector3 c = v0.cross(v1);
// if the magnitude of the cross product approaches zero,
// we get unstable because ANY axis will do when a == +/- b
Scalar d = v0.dot(v1);
// if dot == 1, vectors are the same
if (ei_isApprox(d,1))
{
// set to identity
this->w() = 1; this->start<3>().setZero();
}
Scalar s = ei_sqrt((1+d)*2);
Scalar invs = 1./s;
this->start<3>() = c * invs;
this->w() = s * 0.5;
return *this;
}
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
{
Scalar n2 = this->norm2();
if (n2 > 0)
return (*this) / norm;
}
else
{
// return an invalid result to flag the error
return this->zero();
}
}
template <typename Scalar>
inline Quaternion<Scalar> Quaternion<Scalar>::unitInverse() const
{
return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
}
#endif // EIGEN_QUATERNION_H