| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_TRIDIAGONALIZATION_H |
| #define EIGEN_TRIDIAGONALIZATION_H |
| |
| /** \class Tridiagonalization |
| * |
| * \brief Trigiagonal decomposition of a selfadjoint matrix |
| * |
| * \param MatrixType the type of the matrix of which we are computing the eigen decomposition |
| * |
| * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: |
| * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitatry and \f$ T \f$ a real symmetric tridiagonal matrix |
| * |
| * \sa MatrixBase::tridiagonalize() |
| */ |
| template<typename _MatrixType> class Tridiagonalization |
| { |
| public: |
| |
| typedef _MatrixType MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| enum {SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic |
| ? Dynamic |
| : MatrixType::RowsAtCompileTime-1}; |
| |
| typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType; |
| |
| typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalType; |
| |
| typedef typename NestByValue<DiagonalCoeffs< |
| NestByValue<Block< |
| MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalType; |
| |
| Tridiagonalization() |
| {} |
| |
| Tridiagonalization(int rows, int cols) |
| : m_matrix(rows,cols), m_hCoeffs(rows-1) |
| {} |
| |
| Tridiagonalization(const MatrixType& matrix) |
| : m_matrix(matrix), |
| m_hCoeffs(matrix.cols()-1) |
| { |
| _compute(m_matrix, m_hCoeffs); |
| } |
| |
| /** Computes or re-compute the tridiagonalization for the matrix \a matrix. |
| * |
| * This method allows to re-use the allocated data. |
| */ |
| void compute(const MatrixType& matrix) |
| { |
| m_matrix = matrix; |
| m_hCoeffs.resize(matrix.rows()-1); |
| _compute(m_matrix, m_hCoeffs); |
| } |
| |
| /** \returns the householder coefficients allowing to |
| * reconstruct the matrix Q from the packed data. |
| * |
| * \sa packedMatrix() |
| */ |
| CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; } |
| |
| /** \returns the internal result of the decomposition. |
| * |
| * The returned matrix contains the following information: |
| * - the strict upper part is equal to the input matrix A |
| * - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real). |
| * - the rest of the lower part contains the Householder vectors that, combined with |
| * Householder coefficients returned by householderCoefficients(), |
| * allows to reconstruct the matrix Q as follow: |
| * Q = H_{N-1} ... H_1 H_0 |
| * where the matrices H are the Householder transformation: |
| * H_i = (I - h_i * v_i * v_i') |
| * where h_i == householderCoefficients()[i] and v_i is a Householder vector: |
| * v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ] |
| * |
| * See LAPACK for further details on this packed storage. |
| */ |
| const MatrixType& packedMatrix(void) const { return m_matrix; } |
| |
| MatrixType matrixQ(void) const; |
| const DiagonalType diagonal(void) const; |
| const SubDiagonalType subDiagonal(void) const; |
| |
| private: |
| |
| static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs); |
| |
| protected: |
| MatrixType m_matrix; |
| CoeffVectorType m_hCoeffs; |
| }; |
| |
| |
| /** \internal |
| * Performs a tridiagonal decomposition of \a matA in place. |
| * |
| * \param matA the input selfadjoint matrix |
| * \param hCoeffs returned Householder coefficients |
| * |
| * The result is written in the lower triangular part of \a matA. |
| * |
| * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. |
| * |
| * \sa packedMatrix() |
| */ |
| template<typename MatrixType> |
| void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs) |
| { |
| assert(matA.rows()==matA.cols()); |
| int n = matA.rows(); |
| for (int i = 0; i<n-2; ++i) |
| { |
| // let's consider the vector v = i-th column starting at position i+1 |
| |
| // start of the householder transformation |
| // squared norm of the vector v skipping the first element |
| RealScalar v1norm2 = matA.col(i).end(n-(i+2)).norm2(); |
| |
| if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1))) |
| { |
| hCoeffs.coeffRef(i) = 0.; |
| } |
| else |
| { |
| Scalar v0 = matA.col(i).coeff(i+1); |
| RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2); |
| if (ei_real(v0)>=0.) |
| beta = -beta; |
| matA.col(i).end(n-(i+2)) *= (1./(v0-beta)); |
| matA.col(i).coeffRef(i+1) = beta; |
| Scalar h = (beta - v0) / beta; |
| // end of the householder transformation |
| |
| // Apply similarity transformation to remaining columns, |
| // i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1) |
| |
| matA.col(i).coeffRef(i+1) = 1; |
| // let's use the end of hCoeffs to store temporary values |
| hCoeffs.end(n-i-1) = h * (matA.corner(BottomRight,n-i-1,n-i-1).template extract<Lower|SelfAdjoint>() |
| * matA.col(i).end(n-i-1)); |
| |
| |
| hCoeffs.end(n-i-1) += (h * (-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1))) |
| * matA.col(i).end(n-i-1); |
| |
| matA.corner(BottomRight,n-i-1,n-i-1).template part<Lower>() = |
| matA.corner(BottomRight,n-i-1,n-i-1) - ( |
| (matA.col(i).end(n-i-1) * hCoeffs.end(n-i-1).adjoint()).lazy() |
| + (hCoeffs.end(n-i-1) * matA.col(i).end(n-i-1).adjoint()).lazy() ); |
| // FIXME check that the above expression does follow the lazy path (no temporary and |
| // only lower products are evaluated) |
| // FIXME can we avoid to evaluate twice the diagonal products ? |
| // (in a simple way otherwise it's overkill) |
| |
| matA.col(i).coeffRef(i+1) = beta; |
| |
| hCoeffs.coeffRef(i) = h; |
| } |
| } |
| if (NumTraits<Scalar>::IsComplex) |
| { |
| // householder transformation on the remaining single scalar |
| int i = n-2; |
| Scalar v0 = matA.col(i).coeff(i+1); |
| RealScalar beta = ei_abs(v0); |
| if (ei_real(v0)>=0.) |
| beta = -beta; |
| matA.col(i).coeffRef(i+1) = beta; |
| hCoeffs.coeffRef(i) = (beta - v0) / beta; |
| } |
| } |
| |
| /** reconstructs and returns the matrix Q */ |
| template<typename MatrixType> |
| typename Tridiagonalization<MatrixType>::MatrixType |
| Tridiagonalization<MatrixType>::matrixQ(void) const |
| { |
| int n = m_matrix.rows(); |
| MatrixType matQ = MatrixType::identity(n,n); |
| for (int i = n-2; i>=0; i--) |
| { |
| Scalar tmp = m_matrix.coeff(i+1,i); |
| m_matrix.const_cast_derived().coeffRef(i+1,i) = 1; |
| |
| matQ.corner(BottomRight,n-i-1,n-i-1) -= |
| ((m_hCoeffs[i] * m_matrix.col(i).end(n-i-1)) * |
| (m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy(); |
| |
| m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp; |
| } |
| return matQ; |
| } |
| |
| /** \returns an expression of the diagonal vector */ |
| template<typename MatrixType> |
| const typename Tridiagonalization<MatrixType>::DiagonalType |
| Tridiagonalization<MatrixType>::diagonal(void) const |
| { |
| return m_matrix.diagonal().nestByValue().real(); |
| } |
| |
| /** \returns an expression of the sub-diagonal vector */ |
| template<typename MatrixType> |
| const typename Tridiagonalization<MatrixType>::SubDiagonalType |
| Tridiagonalization<MatrixType>::subDiagonal(void) const |
| { |
| int n = m_matrix.rows(); |
| return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1) |
| .nestByValue().diagonal().nestByValue().real(); |
| } |
| |
| #endif // EIGEN_TRIDIAGONALIZATION_H |