blob: 96a4292b31ff21bab1410fb4c27cf243668544e3 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_TRIDIAGONALIZATION_H
#define EIGEN_TRIDIAGONALIZATION_H
/** \class Tridiagonalization
*
* \brief Trigiagonal decomposition of a selfadjoint matrix
*
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
*
* This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitatry and \f$ T \f$ a real symmetric tridiagonal matrix
*
* \sa MatrixBase::tridiagonalize()
*/
template<typename _MatrixType> class Tridiagonalization
{
public:
typedef _MatrixType MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
enum {SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
? Dynamic
: MatrixType::RowsAtCompileTime-1};
typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;
typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalType;
typedef typename NestByValue<DiagonalCoeffs<
NestByValue<Block<
MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalType;
Tridiagonalization()
{}
Tridiagonalization(int rows, int cols)
: m_matrix(rows,cols), m_hCoeffs(rows-1)
{}
Tridiagonalization(const MatrixType& matrix)
: m_matrix(matrix),
m_hCoeffs(matrix.cols()-1)
{
_compute(m_matrix, m_hCoeffs);
}
/** Computes or re-compute the tridiagonalization for the matrix \a matrix.
*
* This method allows to re-use the allocated data.
*/
void compute(const MatrixType& matrix)
{
m_matrix = matrix;
m_hCoeffs.resize(matrix.rows()-1);
_compute(m_matrix, m_hCoeffs);
}
/** \returns the householder coefficients allowing to
* reconstruct the matrix Q from the packed data.
*
* \sa packedMatrix()
*/
CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
/** \returns the internal result of the decomposition.
*
* The returned matrix contains the following information:
* - the strict upper part is equal to the input matrix A
* - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real).
* - the rest of the lower part contains the Householder vectors that, combined with
* Householder coefficients returned by householderCoefficients(),
* allows to reconstruct the matrix Q as follow:
* Q = H_{N-1} ... H_1 H_0
* where the matrices H are the Householder transformation:
* H_i = (I - h_i * v_i * v_i')
* where h_i == householderCoefficients()[i] and v_i is a Householder vector:
* v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
*
* See LAPACK for further details on this packed storage.
*/
const MatrixType& packedMatrix(void) const { return m_matrix; }
MatrixType matrixQ(void) const;
const DiagonalType diagonal(void) const;
const SubDiagonalType subDiagonal(void) const;
private:
static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
protected:
MatrixType m_matrix;
CoeffVectorType m_hCoeffs;
};
/** \internal
* Performs a tridiagonal decomposition of \a matA in place.
*
* \param matA the input selfadjoint matrix
* \param hCoeffs returned Householder coefficients
*
* The result is written in the lower triangular part of \a matA.
*
* Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
*
* \sa packedMatrix()
*/
template<typename MatrixType>
void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
{
assert(matA.rows()==matA.cols());
int n = matA.rows();
for (int i = 0; i<n-2; ++i)
{
// let's consider the vector v = i-th column starting at position i+1
// start of the householder transformation
// squared norm of the vector v skipping the first element
RealScalar v1norm2 = matA.col(i).end(n-(i+2)).norm2();
if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1)))
{
hCoeffs.coeffRef(i) = 0.;
}
else
{
Scalar v0 = matA.col(i).coeff(i+1);
RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2);
if (ei_real(v0)>=0.)
beta = -beta;
matA.col(i).end(n-(i+2)) *= (1./(v0-beta));
matA.col(i).coeffRef(i+1) = beta;
Scalar h = (beta - v0) / beta;
// end of the householder transformation
// Apply similarity transformation to remaining columns,
// i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)
matA.col(i).coeffRef(i+1) = 1;
// let's use the end of hCoeffs to store temporary values
hCoeffs.end(n-i-1) = h * (matA.corner(BottomRight,n-i-1,n-i-1).template extract<Lower|SelfAdjoint>()
* matA.col(i).end(n-i-1));
hCoeffs.end(n-i-1) += (h * (-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1)))
* matA.col(i).end(n-i-1);
matA.corner(BottomRight,n-i-1,n-i-1).template part<Lower>() =
matA.corner(BottomRight,n-i-1,n-i-1) - (
(matA.col(i).end(n-i-1) * hCoeffs.end(n-i-1).adjoint()).lazy()
+ (hCoeffs.end(n-i-1) * matA.col(i).end(n-i-1).adjoint()).lazy() );
// FIXME check that the above expression does follow the lazy path (no temporary and
// only lower products are evaluated)
// FIXME can we avoid to evaluate twice the diagonal products ?
// (in a simple way otherwise it's overkill)
matA.col(i).coeffRef(i+1) = beta;
hCoeffs.coeffRef(i) = h;
}
}
if (NumTraits<Scalar>::IsComplex)
{
// householder transformation on the remaining single scalar
int i = n-2;
Scalar v0 = matA.col(i).coeff(i+1);
RealScalar beta = ei_abs(v0);
if (ei_real(v0)>=0.)
beta = -beta;
matA.col(i).coeffRef(i+1) = beta;
hCoeffs.coeffRef(i) = (beta - v0) / beta;
}
}
/** reconstructs and returns the matrix Q */
template<typename MatrixType>
typename Tridiagonalization<MatrixType>::MatrixType
Tridiagonalization<MatrixType>::matrixQ(void) const
{
int n = m_matrix.rows();
MatrixType matQ = MatrixType::identity(n,n);
for (int i = n-2; i>=0; i--)
{
Scalar tmp = m_matrix.coeff(i+1,i);
m_matrix.const_cast_derived().coeffRef(i+1,i) = 1;
matQ.corner(BottomRight,n-i-1,n-i-1) -=
((m_hCoeffs[i] * m_matrix.col(i).end(n-i-1)) *
(m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();
m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp;
}
return matQ;
}
/** \returns an expression of the diagonal vector */
template<typename MatrixType>
const typename Tridiagonalization<MatrixType>::DiagonalType
Tridiagonalization<MatrixType>::diagonal(void) const
{
return m_matrix.diagonal().nestByValue().real();
}
/** \returns an expression of the sub-diagonal vector */
template<typename MatrixType>
const typename Tridiagonalization<MatrixType>::SubDiagonalType
Tridiagonalization<MatrixType>::subDiagonal(void) const
{
int n = m_matrix.rows();
return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
.nestByValue().diagonal().nestByValue().real();
}
#endif // EIGEN_TRIDIAGONALIZATION_H