| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_INCOMPLETE_CHOlESKY_H |
| #define EIGEN_INCOMPLETE_CHOlESKY_H |
| |
| #include <vector> |
| #include <list> |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| /** |
| * \brief Modified Incomplete Cholesky with dual threshold |
| * |
| * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with |
| * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 |
| * |
| * \tparam Scalar the scalar type of the input matrices |
| * \tparam UpLo_ The triangular part that will be used for the computations. It can be Lower |
| * or Upper. Default is Lower. |
| * \tparam OrderingType_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is |
| * AMDOrdering<int>. |
| * |
| * \implsparsesolverconcept |
| * |
| * It performs the following incomplete factorization: \f$ S P A P' S + \sigma I \approx L L' \f$ |
| * where L is a lower triangular factor, S is a diagonal scaling matrix, P is a |
| * fill-in reducing permutation as computed by the ordering method, and \f$ \sigma \f$ is a shift |
| * for ensuring the decomposed matrix is positive definite. |
| * |
| * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out, |
| * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly |
| * performed on the matrix B, and \sigma = 0. Otherwise, the factorization is performed on the shifted matrix \f$ B + |
| * \sigma I \f$ for a shifting factor \f$ \sigma \f$. We start with \f$ \sigma = \sigma_0 - \beta \f$, where \f$ |
| * \sigma_0 \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ |
| * \sigma_0 = 10^{-3} \f$. If the factorization fails, then the shift in doubled until it succeed or a maximum of ten |
| * attempts. If it still fails, as returned by the info() method, then you can either increase the initial shift, or |
| * better use another preconditioning technique. |
| * |
| */ |
| template <typename Scalar, int UpLo_ = Lower, typename OrderingType_ = AMDOrdering<int> > |
| class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar, UpLo_, OrderingType_> > { |
| protected: |
| typedef SparseSolverBase<IncompleteCholesky<Scalar, UpLo_, OrderingType_> > Base; |
| using Base::m_isInitialized; |
| |
| public: |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef OrderingType_ OrderingType; |
| typedef typename OrderingType::PermutationType PermutationType; |
| typedef typename PermutationType::StorageIndex StorageIndex; |
| typedef SparseMatrix<Scalar, ColMajor, StorageIndex> FactorType; |
| typedef Matrix<Scalar, Dynamic, 1> VectorSx; |
| typedef Matrix<RealScalar, Dynamic, 1> VectorRx; |
| typedef Matrix<StorageIndex, Dynamic, 1> VectorIx; |
| typedef std::vector<std::list<StorageIndex> > VectorList; |
| enum { UpLo = UpLo_ }; |
| enum { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic }; |
| |
| public: |
| /** Default constructor leaving the object in a partly non-initialized stage. |
| * |
| * You must call compute() or the pair analyzePattern()/factorize() to make it valid. |
| * |
| * \sa IncompleteCholesky(const MatrixType&) |
| */ |
| IncompleteCholesky() : m_initialShift(1e-3), m_analysisIsOk(false), m_factorizationIsOk(false) {} |
| |
| /** Constructor computing the incomplete factorization for the given matrix \a matrix. |
| */ |
| template <typename MatrixType> |
| IncompleteCholesky(const MatrixType& matrix) |
| : m_initialShift(1e-3), m_analysisIsOk(false), m_factorizationIsOk(false) { |
| compute(matrix); |
| } |
| |
| /** \returns number of rows of the factored matrix */ |
| EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_L.rows(); } |
| |
| /** \returns number of columns of the factored matrix */ |
| EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_L.cols(); } |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * It triggers an assertion if \c *this has not been initialized through the respective constructor, |
| * or a call to compute() or analyzePattern(). |
| * |
| * \returns \c Success if computation was successful, |
| * \c NumericalIssue if the matrix appears to be negative. |
| */ |
| ComputationInfo info() const { |
| eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized."); |
| return m_info; |
| } |
| |
| /** \brief Set the initial shift parameter \f$ \sigma \f$. |
| */ |
| void setInitialShift(RealScalar shift) { m_initialShift = shift; } |
| |
| /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat |
| */ |
| template <typename MatrixType> |
| void analyzePattern(const MatrixType& mat) { |
| OrderingType ord; |
| PermutationType pinv; |
| ord(mat.template selfadjointView<UpLo>(), pinv); |
| if (pinv.size() > 0) |
| m_perm = pinv.inverse(); |
| else |
| m_perm.resize(0); |
| m_L.resize(mat.rows(), mat.cols()); |
| m_analysisIsOk = true; |
| m_isInitialized = true; |
| m_info = Success; |
| } |
| |
| /** \brief Performs the numerical factorization of the input matrix \a mat |
| * |
| * The method analyzePattern() or compute() must have been called beforehand |
| * with a matrix having the same pattern. |
| * |
| * \sa compute(), analyzePattern() |
| */ |
| template <typename MatrixType> |
| void factorize(const MatrixType& mat); |
| |
| /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat |
| * |
| * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods. |
| * |
| * \sa analyzePattern(), factorize() |
| */ |
| template <typename MatrixType> |
| void compute(const MatrixType& mat) { |
| analyzePattern(mat); |
| factorize(mat); |
| } |
| |
| // internal |
| template <typename Rhs, typename Dest> |
| void _solve_impl(const Rhs& b, Dest& x) const { |
| eigen_assert(m_factorizationIsOk && "factorize() should be called first"); |
| if (m_perm.rows() == b.rows()) |
| x = m_perm * b; |
| else |
| x = b; |
| x = m_scale.asDiagonal() * x; |
| x = m_L.template triangularView<Lower>().solve(x); |
| x = m_L.adjoint().template triangularView<Upper>().solve(x); |
| x = m_scale.asDiagonal() * x; |
| if (m_perm.rows() == b.rows()) x = m_perm.inverse() * x; |
| } |
| |
| /** \returns the sparse lower triangular factor L */ |
| const FactorType& matrixL() const { |
| eigen_assert(m_factorizationIsOk && "factorize() should be called first"); |
| return m_L; |
| } |
| |
| /** \returns a vector representing the scaling factor S */ |
| const VectorRx& scalingS() const { |
| eigen_assert(m_factorizationIsOk && "factorize() should be called first"); |
| return m_scale; |
| } |
| |
| /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */ |
| const PermutationType& permutationP() const { |
| eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); |
| return m_perm; |
| } |
| |
| /** \returns the final shift parameter from the computation */ |
| RealScalar shift() const { return m_shift; } |
| |
| protected: |
| FactorType m_L; // The lower part stored in CSC |
| VectorRx m_scale; // The vector for scaling the matrix |
| RealScalar m_initialShift; // The initial shift parameter |
| bool m_analysisIsOk; |
| bool m_factorizationIsOk; |
| ComputationInfo m_info; |
| PermutationType m_perm; |
| RealScalar m_shift; // The final shift parameter. |
| |
| private: |
| inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, |
| const Index& jk, VectorIx& firstElt, VectorList& listCol); |
| }; |
| |
| // Based on the following paper: |
| // C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with |
| // Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 |
| // http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf |
| template <typename Scalar, int UpLo_, typename OrderingType> |
| template <typename MatrixType_> |
| void IncompleteCholesky<Scalar, UpLo_, OrderingType>::factorize(const MatrixType_& mat) { |
| using std::sqrt; |
| eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); |
| |
| // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of |
| // the original matrix. Other strategies will be added |
| |
| // Apply the fill-reducing permutation computed in analyzePattern() |
| if (m_perm.rows() == mat.rows()) // To detect the null permutation |
| { |
| // The temporary is needed to make sure that the diagonal entry is properly sorted |
| FactorType tmp(mat.rows(), mat.cols()); |
| tmp = mat.template selfadjointView<UpLo_>().twistedBy(m_perm); |
| m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>(); |
| } else { |
| m_L.template selfadjointView<Lower>() = mat.template selfadjointView<UpLo_>(); |
| } |
| |
| // The algorithm will insert increasingly large shifts on the diagonal until |
| // factorization succeeds. Therefore we have to make sure that there is a |
| // space in the datastructure to store such values, even if the original |
| // matrix has a zero on the diagonal. |
| bool modified = false; |
| for (Index i = 0; i < mat.cols(); ++i) { |
| bool inserted = false; |
| m_L.findOrInsertCoeff(i, i, &inserted); |
| if (inserted) { |
| modified = true; |
| } |
| } |
| if (modified) m_L.makeCompressed(); |
| |
| Index n = m_L.cols(); |
| Index nnz = m_L.nonZeros(); |
| Map<VectorSx> vals(m_L.valuePtr(), nnz); // values |
| Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); // Row indices |
| Map<VectorIx> colPtr(m_L.outerIndexPtr(), n + 1); // Pointer to the beginning of each row |
| VectorIx firstElt(n - 1); // for each j, points to the next entry in vals that will be used in the factorization |
| VectorList listCol(n); // listCol(j) is a linked list of columns to update column j |
| VectorSx col_vals(n); // Store a nonzero values in each column |
| VectorIx col_irow(n); // Row indices of nonzero elements in each column |
| VectorIx col_pattern(n); |
| col_pattern.fill(-1); |
| StorageIndex col_nnz; |
| |
| // Computes the scaling factors |
| m_scale.resize(n); |
| m_scale.setZero(); |
| for (Index j = 0; j < n; j++) |
| for (Index k = colPtr[j]; k < colPtr[j + 1]; k++) { |
| m_scale(j) += numext::abs2(vals(k)); |
| if (rowIdx[k] != j) m_scale(rowIdx[k]) += numext::abs2(vals(k)); |
| } |
| |
| m_scale = m_scale.cwiseSqrt().cwiseSqrt(); |
| |
| for (Index j = 0; j < n; ++j) |
| if (m_scale(j) > (std::numeric_limits<RealScalar>::min)()) |
| m_scale(j) = RealScalar(1) / m_scale(j); |
| else |
| m_scale(j) = 1; |
| |
| // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster) |
| |
| // Scale and compute the shift for the matrix |
| RealScalar mindiag = NumTraits<RealScalar>::highest(); |
| for (Index j = 0; j < n; j++) { |
| for (Index k = colPtr[j]; k < colPtr[j + 1]; k++) vals[k] *= (m_scale(j) * m_scale(rowIdx[k])); |
| eigen_internal_assert(rowIdx[colPtr[j]] == j && |
| "IncompleteCholesky: only the lower triangular part must be stored"); |
| mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag); |
| } |
| |
| FactorType L_save = m_L; |
| |
| m_shift = RealScalar(0); |
| if (mindiag <= RealScalar(0.)) m_shift = m_initialShift - mindiag; |
| |
| m_info = NumericalIssue; |
| |
| // Try to perform the incomplete factorization using the current shift |
| int iter = 0; |
| do { |
| // Apply the shift to the diagonal elements of the matrix |
| for (Index j = 0; j < n; j++) vals[colPtr[j]] += m_shift; |
| |
| // jki version of the Cholesky factorization |
| Index j = 0; |
| for (; j < n; ++j) { |
| // Left-looking factorization of the j-th column |
| // First, load the j-th column into col_vals |
| Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored |
| col_nnz = 0; |
| for (Index i = colPtr[j] + 1; i < colPtr[j + 1]; i++) { |
| StorageIndex l = rowIdx[i]; |
| col_vals(col_nnz) = vals[i]; |
| col_irow(col_nnz) = l; |
| col_pattern(l) = col_nnz; |
| col_nnz++; |
| } |
| { |
| typename std::list<StorageIndex>::iterator k; |
| // Browse all previous columns that will update column j |
| for (k = listCol[j].begin(); k != listCol[j].end(); k++) { |
| Index jk = firstElt(*k); // First element to use in the column |
| eigen_internal_assert(rowIdx[jk] == j); |
| Scalar v_j_jk = numext::conj(vals[jk]); |
| |
| jk += 1; |
| for (Index i = jk; i < colPtr[*k + 1]; i++) { |
| StorageIndex l = rowIdx[i]; |
| if (col_pattern[l] < 0) { |
| col_vals(col_nnz) = vals[i] * v_j_jk; |
| col_irow[col_nnz] = l; |
| col_pattern(l) = col_nnz; |
| col_nnz++; |
| } else |
| col_vals(col_pattern[l]) -= vals[i] * v_j_jk; |
| } |
| updateList(colPtr, rowIdx, vals, *k, jk, firstElt, listCol); |
| } |
| } |
| |
| // Scale the current column |
| if (numext::real(diag) <= 0) { |
| if (++iter >= 10) return; |
| |
| // increase shift |
| m_shift = numext::maxi(m_initialShift, RealScalar(2) * m_shift); |
| // restore m_L, col_pattern, and listCol |
| vals = Map<const VectorSx>(L_save.valuePtr(), nnz); |
| rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz); |
| colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n + 1); |
| col_pattern.fill(-1); |
| for (Index i = 0; i < n; ++i) listCol[i].clear(); |
| |
| break; |
| } |
| |
| RealScalar rdiag = sqrt(numext::real(diag)); |
| vals[colPtr[j]] = rdiag; |
| for (Index k = 0; k < col_nnz; ++k) { |
| Index i = col_irow[k]; |
| // Scale |
| col_vals(k) /= rdiag; |
| // Update the remaining diagonals with col_vals |
| vals[colPtr[i]] -= numext::abs2(col_vals(k)); |
| } |
| // Select the largest p elements |
| // p is the original number of elements in the column (without the diagonal) |
| Index p = colPtr[j + 1] - colPtr[j] - 1; |
| Ref<VectorSx> cvals = col_vals.head(col_nnz); |
| Ref<VectorIx> cirow = col_irow.head(col_nnz); |
| internal::QuickSplit(cvals, cirow, p); |
| // Insert the largest p elements in the matrix |
| Index cpt = 0; |
| for (Index i = colPtr[j] + 1; i < colPtr[j + 1]; i++) { |
| vals[i] = col_vals(cpt); |
| rowIdx[i] = col_irow(cpt); |
| // restore col_pattern: |
| col_pattern(col_irow(cpt)) = -1; |
| cpt++; |
| } |
| // Get the first smallest row index and put it after the diagonal element |
| Index jk = colPtr(j) + 1; |
| updateList(colPtr, rowIdx, vals, j, jk, firstElt, listCol); |
| } |
| |
| if (j == n) { |
| m_factorizationIsOk = true; |
| m_info = Success; |
| } |
| } while (m_info != Success); |
| } |
| |
| template <typename Scalar, int UpLo_, typename OrderingType> |
| inline void IncompleteCholesky<Scalar, UpLo_, OrderingType>::updateList(Ref<const VectorIx> colPtr, |
| Ref<VectorIx> rowIdx, Ref<VectorSx> vals, |
| const Index& col, const Index& jk, |
| VectorIx& firstElt, VectorList& listCol) { |
| if (jk < colPtr(col + 1)) { |
| Index p = colPtr(col + 1) - jk; |
| Index minpos; |
| rowIdx.segment(jk, p).minCoeff(&minpos); |
| minpos += jk; |
| if (rowIdx(minpos) != rowIdx(jk)) { |
| // Swap |
| std::swap(rowIdx(jk), rowIdx(minpos)); |
| std::swap(vals(jk), vals(minpos)); |
| } |
| firstElt(col) = internal::convert_index<StorageIndex, Index>(jk); |
| listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex, Index>(col)); |
| } |
| } |
| |
| } // end namespace Eigen |
| |
| #endif |