blob: a97b9054cefbc4460dfa0ce84d4fb6e476c35086 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
#define EIGEN_INCOMPLETE_CHOlESKY_H
#include <vector>
#include <list>
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/**
* \brief Modified Incomplete Cholesky with dual threshold
*
* References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
* Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
*
* \tparam Scalar the scalar type of the input matrices
* \tparam UpLo_ The triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam OrderingType_ The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is
* AMDOrdering<int>.
*
* \implsparsesolverconcept
*
* It performs the following incomplete factorization: \f$ S P A P' S + \sigma I \approx L L' \f$
* where L is a lower triangular factor, S is a diagonal scaling matrix, P is a
* fill-in reducing permutation as computed by the ordering method, and \f$ \sigma \f$ is a shift
* for ensuring the decomposed matrix is positive definite.
*
* \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out,
* and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly
* performed on the matrix B, and \sigma = 0. Otherwise, the factorization is performed on the shifted matrix \f$ B +
* \sigma I \f$ for a shifting factor \f$ \sigma \f$. We start with \f$ \sigma = \sigma_0 - \beta \f$, where \f$
* \sigma_0 \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$
* \sigma_0 = 10^{-3} \f$. If the factorization fails, then the shift in doubled until it succeed or a maximum of ten
* attempts. If it still fails, as returned by the info() method, then you can either increase the initial shift, or
* better use another preconditioning technique.
*
*/
template <typename Scalar, int UpLo_ = Lower, typename OrderingType_ = AMDOrdering<int> >
class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar, UpLo_, OrderingType_> > {
protected:
typedef SparseSolverBase<IncompleteCholesky<Scalar, UpLo_, OrderingType_> > Base;
using Base::m_isInitialized;
public:
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef OrderingType_ OrderingType;
typedef typename OrderingType::PermutationType PermutationType;
typedef typename PermutationType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> FactorType;
typedef Matrix<Scalar, Dynamic, 1> VectorSx;
typedef Matrix<RealScalar, Dynamic, 1> VectorRx;
typedef Matrix<StorageIndex, Dynamic, 1> VectorIx;
typedef std::vector<std::list<StorageIndex> > VectorList;
enum { UpLo = UpLo_ };
enum { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic };
public:
/** Default constructor leaving the object in a partly non-initialized stage.
*
* You must call compute() or the pair analyzePattern()/factorize() to make it valid.
*
* \sa IncompleteCholesky(const MatrixType&)
*/
IncompleteCholesky() : m_initialShift(1e-3), m_analysisIsOk(false), m_factorizationIsOk(false) {}
/** Constructor computing the incomplete factorization for the given matrix \a matrix.
*/
template <typename MatrixType>
IncompleteCholesky(const MatrixType& matrix)
: m_initialShift(1e-3), m_analysisIsOk(false), m_factorizationIsOk(false) {
compute(matrix);
}
/** \returns number of rows of the factored matrix */
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_L.rows(); }
/** \returns number of columns of the factored matrix */
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_L.cols(); }
/** \brief Reports whether previous computation was successful.
*
* It triggers an assertion if \c *this has not been initialized through the respective constructor,
* or a call to compute() or analyzePattern().
*
* \returns \c Success if computation was successful,
* \c NumericalIssue if the matrix appears to be negative.
*/
ComputationInfo info() const {
eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
return m_info;
}
/** \brief Set the initial shift parameter \f$ \sigma \f$.
*/
void setInitialShift(RealScalar shift) { m_initialShift = shift; }
/** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
*/
template <typename MatrixType>
void analyzePattern(const MatrixType& mat) {
OrderingType ord;
PermutationType pinv;
ord(mat.template selfadjointView<UpLo>(), pinv);
if (pinv.size() > 0)
m_perm = pinv.inverse();
else
m_perm.resize(0);
m_L.resize(mat.rows(), mat.cols());
m_analysisIsOk = true;
m_isInitialized = true;
m_info = Success;
}
/** \brief Performs the numerical factorization of the input matrix \a mat
*
* The method analyzePattern() or compute() must have been called beforehand
* with a matrix having the same pattern.
*
* \sa compute(), analyzePattern()
*/
template <typename MatrixType>
void factorize(const MatrixType& mat);
/** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
*
* It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
*
* \sa analyzePattern(), factorize()
*/
template <typename MatrixType>
void compute(const MatrixType& mat) {
analyzePattern(mat);
factorize(mat);
}
// internal
template <typename Rhs, typename Dest>
void _solve_impl(const Rhs& b, Dest& x) const {
eigen_assert(m_factorizationIsOk && "factorize() should be called first");
if (m_perm.rows() == b.rows())
x = m_perm * b;
else
x = b;
x = m_scale.asDiagonal() * x;
x = m_L.template triangularView<Lower>().solve(x);
x = m_L.adjoint().template triangularView<Upper>().solve(x);
x = m_scale.asDiagonal() * x;
if (m_perm.rows() == b.rows()) x = m_perm.inverse() * x;
}
/** \returns the sparse lower triangular factor L */
const FactorType& matrixL() const {
eigen_assert(m_factorizationIsOk && "factorize() should be called first");
return m_L;
}
/** \returns a vector representing the scaling factor S */
const VectorRx& scalingS() const {
eigen_assert(m_factorizationIsOk && "factorize() should be called first");
return m_scale;
}
/** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */
const PermutationType& permutationP() const {
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
return m_perm;
}
/** \returns the final shift parameter from the computation */
RealScalar shift() const { return m_shift; }
protected:
FactorType m_L; // The lower part stored in CSC
VectorRx m_scale; // The vector for scaling the matrix
RealScalar m_initialShift; // The initial shift parameter
bool m_analysisIsOk;
bool m_factorizationIsOk;
ComputationInfo m_info;
PermutationType m_perm;
RealScalar m_shift; // The final shift parameter.
private:
inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col,
const Index& jk, VectorIx& firstElt, VectorList& listCol);
};
// Based on the following paper:
// C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
// Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
// http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
template <typename Scalar, int UpLo_, typename OrderingType>
template <typename MatrixType_>
void IncompleteCholesky<Scalar, UpLo_, OrderingType>::factorize(const MatrixType_& mat) {
using std::sqrt;
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
// Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of
// the original matrix. Other strategies will be added
// Apply the fill-reducing permutation computed in analyzePattern()
if (m_perm.rows() == mat.rows()) // To detect the null permutation
{
// The temporary is needed to make sure that the diagonal entry is properly sorted
FactorType tmp(mat.rows(), mat.cols());
tmp = mat.template selfadjointView<UpLo_>().twistedBy(m_perm);
m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
} else {
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<UpLo_>();
}
// The algorithm will insert increasingly large shifts on the diagonal until
// factorization succeeds. Therefore we have to make sure that there is a
// space in the datastructure to store such values, even if the original
// matrix has a zero on the diagonal.
bool modified = false;
for (Index i = 0; i < mat.cols(); ++i) {
bool inserted = false;
m_L.findOrInsertCoeff(i, i, &inserted);
if (inserted) {
modified = true;
}
}
if (modified) m_L.makeCompressed();
Index n = m_L.cols();
Index nnz = m_L.nonZeros();
Map<VectorSx> vals(m_L.valuePtr(), nnz); // values
Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); // Row indices
Map<VectorIx> colPtr(m_L.outerIndexPtr(), n + 1); // Pointer to the beginning of each row
VectorIx firstElt(n - 1); // for each j, points to the next entry in vals that will be used in the factorization
VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
VectorSx col_vals(n); // Store a nonzero values in each column
VectorIx col_irow(n); // Row indices of nonzero elements in each column
VectorIx col_pattern(n);
col_pattern.fill(-1);
StorageIndex col_nnz;
// Computes the scaling factors
m_scale.resize(n);
m_scale.setZero();
for (Index j = 0; j < n; j++)
for (Index k = colPtr[j]; k < colPtr[j + 1]; k++) {
m_scale(j) += numext::abs2(vals(k));
if (rowIdx[k] != j) m_scale(rowIdx[k]) += numext::abs2(vals(k));
}
m_scale = m_scale.cwiseSqrt().cwiseSqrt();
for (Index j = 0; j < n; ++j)
if (m_scale(j) > (std::numeric_limits<RealScalar>::min)())
m_scale(j) = RealScalar(1) / m_scale(j);
else
m_scale(j) = 1;
// TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)
// Scale and compute the shift for the matrix
RealScalar mindiag = NumTraits<RealScalar>::highest();
for (Index j = 0; j < n; j++) {
for (Index k = colPtr[j]; k < colPtr[j + 1]; k++) vals[k] *= (m_scale(j) * m_scale(rowIdx[k]));
eigen_internal_assert(rowIdx[colPtr[j]] == j &&
"IncompleteCholesky: only the lower triangular part must be stored");
mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
}
FactorType L_save = m_L;
m_shift = RealScalar(0);
if (mindiag <= RealScalar(0.)) m_shift = m_initialShift - mindiag;
m_info = NumericalIssue;
// Try to perform the incomplete factorization using the current shift
int iter = 0;
do {
// Apply the shift to the diagonal elements of the matrix
for (Index j = 0; j < n; j++) vals[colPtr[j]] += m_shift;
// jki version of the Cholesky factorization
Index j = 0;
for (; j < n; ++j) {
// Left-looking factorization of the j-th column
// First, load the j-th column into col_vals
Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
col_nnz = 0;
for (Index i = colPtr[j] + 1; i < colPtr[j + 1]; i++) {
StorageIndex l = rowIdx[i];
col_vals(col_nnz) = vals[i];
col_irow(col_nnz) = l;
col_pattern(l) = col_nnz;
col_nnz++;
}
{
typename std::list<StorageIndex>::iterator k;
// Browse all previous columns that will update column j
for (k = listCol[j].begin(); k != listCol[j].end(); k++) {
Index jk = firstElt(*k); // First element to use in the column
eigen_internal_assert(rowIdx[jk] == j);
Scalar v_j_jk = numext::conj(vals[jk]);
jk += 1;
for (Index i = jk; i < colPtr[*k + 1]; i++) {
StorageIndex l = rowIdx[i];
if (col_pattern[l] < 0) {
col_vals(col_nnz) = vals[i] * v_j_jk;
col_irow[col_nnz] = l;
col_pattern(l) = col_nnz;
col_nnz++;
} else
col_vals(col_pattern[l]) -= vals[i] * v_j_jk;
}
updateList(colPtr, rowIdx, vals, *k, jk, firstElt, listCol);
}
}
// Scale the current column
if (numext::real(diag) <= 0) {
if (++iter >= 10) return;
// increase shift
m_shift = numext::maxi(m_initialShift, RealScalar(2) * m_shift);
// restore m_L, col_pattern, and listCol
vals = Map<const VectorSx>(L_save.valuePtr(), nnz);
rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz);
colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n + 1);
col_pattern.fill(-1);
for (Index i = 0; i < n; ++i) listCol[i].clear();
break;
}
RealScalar rdiag = sqrt(numext::real(diag));
vals[colPtr[j]] = rdiag;
for (Index k = 0; k < col_nnz; ++k) {
Index i = col_irow[k];
// Scale
col_vals(k) /= rdiag;
// Update the remaining diagonals with col_vals
vals[colPtr[i]] -= numext::abs2(col_vals(k));
}
// Select the largest p elements
// p is the original number of elements in the column (without the diagonal)
Index p = colPtr[j + 1] - colPtr[j] - 1;
Ref<VectorSx> cvals = col_vals.head(col_nnz);
Ref<VectorIx> cirow = col_irow.head(col_nnz);
internal::QuickSplit(cvals, cirow, p);
// Insert the largest p elements in the matrix
Index cpt = 0;
for (Index i = colPtr[j] + 1; i < colPtr[j + 1]; i++) {
vals[i] = col_vals(cpt);
rowIdx[i] = col_irow(cpt);
// restore col_pattern:
col_pattern(col_irow(cpt)) = -1;
cpt++;
}
// Get the first smallest row index and put it after the diagonal element
Index jk = colPtr(j) + 1;
updateList(colPtr, rowIdx, vals, j, jk, firstElt, listCol);
}
if (j == n) {
m_factorizationIsOk = true;
m_info = Success;
}
} while (m_info != Success);
}
template <typename Scalar, int UpLo_, typename OrderingType>
inline void IncompleteCholesky<Scalar, UpLo_, OrderingType>::updateList(Ref<const VectorIx> colPtr,
Ref<VectorIx> rowIdx, Ref<VectorSx> vals,
const Index& col, const Index& jk,
VectorIx& firstElt, VectorList& listCol) {
if (jk < colPtr(col + 1)) {
Index p = colPtr(col + 1) - jk;
Index minpos;
rowIdx.segment(jk, p).minCoeff(&minpos);
minpos += jk;
if (rowIdx(minpos) != rowIdx(jk)) {
// Swap
std::swap(rowIdx(jk), rowIdx(minpos));
std::swap(vals(jk), vals(minpos));
}
firstElt(col) = internal::convert_index<StorageIndex, Index>(jk);
listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex, Index>(col));
}
}
} // end namespace Eigen
#endif