| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> |
| // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SUITESPARSEQRSUPPORT_H |
| #define EIGEN_SUITESPARSEQRSUPPORT_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| template <typename MatrixType> |
| class SPQR; |
| template <typename SPQRType> |
| struct SPQRMatrixQReturnType; |
| template <typename SPQRType> |
| struct SPQRMatrixQTransposeReturnType; |
| template <typename SPQRType, typename Derived> |
| struct SPQR_QProduct; |
| namespace internal { |
| template <typename SPQRType> |
| struct traits<SPQRMatrixQReturnType<SPQRType> > { |
| typedef typename SPQRType::MatrixType ReturnType; |
| }; |
| template <typename SPQRType> |
| struct traits<SPQRMatrixQTransposeReturnType<SPQRType> > { |
| typedef typename SPQRType::MatrixType ReturnType; |
| }; |
| template <typename SPQRType, typename Derived> |
| struct traits<SPQR_QProduct<SPQRType, Derived> > { |
| typedef typename Derived::PlainObject ReturnType; |
| }; |
| } // End namespace internal |
| |
| /** |
| * \ingroup SPQRSupport_Module |
| * \class SPQR |
| * \brief Sparse QR factorization based on SuiteSparseQR library |
| * |
| * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition |
| * of sparse matrices. The result is then used to solve linear leasts_square systems. |
| * Clearly, a QR factorization is returned such that A*P = Q*R where : |
| * |
| * P is the column permutation. Use colsPermutation() to get it. |
| * |
| * Q is the orthogonal matrix represented as Householder reflectors. |
| * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. |
| * You can then apply it to a vector. |
| * |
| * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. |
| * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index |
| * |
| * \tparam MatrixType_ The type of the sparse matrix A, must be a column-major SparseMatrix<> |
| * |
| * \implsparsesolverconcept |
| * |
| * |
| */ |
| template <typename MatrixType_> |
| class SPQR : public SparseSolverBase<SPQR<MatrixType_> > { |
| protected: |
| typedef SparseSolverBase<SPQR<MatrixType_> > Base; |
| using Base::m_isInitialized; |
| |
| public: |
| typedef typename MatrixType_::Scalar Scalar; |
| typedef typename MatrixType_::RealScalar RealScalar; |
| typedef SuiteSparse_long StorageIndex; |
| typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType; |
| typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType; |
| enum { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic }; |
| |
| public: |
| SPQR() |
| : m_analysisIsOk(false), |
| m_factorizationIsOk(false), |
| m_isRUpToDate(false), |
| m_ordering(SPQR_ORDERING_DEFAULT), |
| m_allow_tol(SPQR_DEFAULT_TOL), |
| m_tolerance(NumTraits<Scalar>::epsilon()), |
| m_cR(0), |
| m_E(0), |
| m_H(0), |
| m_HPinv(0), |
| m_HTau(0), |
| m_useDefaultThreshold(true) { |
| cholmod_l_start(&m_cc); |
| } |
| |
| explicit SPQR(const MatrixType_& matrix) |
| : m_analysisIsOk(false), |
| m_factorizationIsOk(false), |
| m_isRUpToDate(false), |
| m_ordering(SPQR_ORDERING_DEFAULT), |
| m_allow_tol(SPQR_DEFAULT_TOL), |
| m_tolerance(NumTraits<Scalar>::epsilon()), |
| m_cR(0), |
| m_E(0), |
| m_H(0), |
| m_HPinv(0), |
| m_HTau(0), |
| m_useDefaultThreshold(true) { |
| cholmod_l_start(&m_cc); |
| compute(matrix); |
| } |
| |
| ~SPQR() { |
| SPQR_free(); |
| cholmod_l_finish(&m_cc); |
| } |
| void SPQR_free() { |
| cholmod_l_free_sparse(&m_H, &m_cc); |
| cholmod_l_free_sparse(&m_cR, &m_cc); |
| cholmod_l_free_dense(&m_HTau, &m_cc); |
| std::free(m_E); |
| std::free(m_HPinv); |
| } |
| |
| void compute(const MatrixType_& matrix) { |
| if (m_isInitialized) SPQR_free(); |
| |
| MatrixType mat(matrix); |
| |
| /* Compute the default threshold as in MatLab, see: |
| * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing |
| * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 |
| */ |
| RealScalar pivotThreshold = m_tolerance; |
| if (m_useDefaultThreshold) { |
| RealScalar max2Norm = 0.0; |
| for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm()); |
| if (numext::is_exactly_zero(max2Norm)) max2Norm = RealScalar(1); |
| pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon(); |
| } |
| cholmod_sparse A; |
| A = viewAsCholmod(mat); |
| m_rows = matrix.rows(); |
| m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, internal::convert_index<StorageIndex>(matrix.cols()), &A, |
| &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc); |
| |
| if (!m_cR) { |
| m_info = NumericalIssue; |
| m_isInitialized = false; |
| return; |
| } |
| m_info = Success; |
| m_isInitialized = true; |
| m_isRUpToDate = false; |
| } |
| /** |
| * Get the number of rows of the input matrix and the Q matrix |
| */ |
| inline Index rows() const { return m_rows; } |
| |
| /** |
| * Get the number of columns of the input matrix. |
| */ |
| inline Index cols() const { return m_cR->ncol; } |
| |
| template <typename Rhs, typename Dest> |
| void _solve_impl(const MatrixBase<Rhs>& b, MatrixBase<Dest>& dest) const { |
| eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); |
| eigen_assert(b.cols() == 1 && "This method is for vectors only"); |
| |
| // Compute Q^T * b |
| typename Dest::PlainObject y, y2; |
| y = matrixQ().transpose() * b; |
| |
| // Solves with the triangular matrix R |
| Index rk = this->rank(); |
| y2 = y; |
| y.resize((std::max)(cols(), Index(y.rows())), y.cols()); |
| y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk)); |
| |
| // Apply the column permutation |
| // colsPermutation() performs a copy of the permutation, |
| // so let's apply it manually: |
| for (Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i); |
| for (Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero(); |
| |
| // y.bottomRows(y.rows()-rk).setZero(); |
| // dest = colsPermutation() * y.topRows(cols()); |
| |
| m_info = Success; |
| } |
| |
| /** \returns the sparse triangular factor R. It is a sparse matrix |
| */ |
| const MatrixType matrixR() const { |
| eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); |
| if (!m_isRUpToDate) { |
| m_R = viewAsEigen<Scalar, StorageIndex>(*m_cR); |
| m_isRUpToDate = true; |
| } |
| return m_R; |
| } |
| /// Get an expression of the matrix Q |
| SPQRMatrixQReturnType<SPQR> matrixQ() const { return SPQRMatrixQReturnType<SPQR>(*this); } |
| /// Get the permutation that was applied to columns of A |
| PermutationType colsPermutation() const { |
| eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| return PermutationType(m_E, m_cR->ncol); |
| } |
| /** |
| * Gets the rank of the matrix. |
| * It should be equal to matrixQR().cols if the matrix is full-rank |
| */ |
| Index rank() const { |
| eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| return m_cc.SPQR_istat[4]; |
| } |
| /// Set the fill-reducing ordering method to be used |
| void setSPQROrdering(int ord) { m_ordering = ord; } |
| /// Set the tolerance tol to treat columns with 2-norm < =tol as zero |
| void setPivotThreshold(const RealScalar& tol) { |
| m_useDefaultThreshold = false; |
| m_tolerance = tol; |
| } |
| |
| /** \returns a pointer to the SPQR workspace */ |
| cholmod_common* cholmodCommon() const { return &m_cc; } |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was successful, |
| * \c NumericalIssue if the sparse QR can not be computed |
| */ |
| ComputationInfo info() const { |
| eigen_assert(m_isInitialized && "Decomposition is not initialized."); |
| return m_info; |
| } |
| |
| protected: |
| bool m_analysisIsOk; |
| bool m_factorizationIsOk; |
| mutable bool m_isRUpToDate; |
| mutable ComputationInfo m_info; |
| int m_ordering; // Ordering method to use, see SPQR's manual |
| int m_allow_tol; // Allow to use some tolerance during numerical factorization. |
| RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero |
| mutable cholmod_sparse* m_cR = nullptr; // The sparse R factor in cholmod format |
| mutable MatrixType m_R; // The sparse matrix R in Eigen format |
| mutable StorageIndex* m_E = nullptr; // The permutation applied to columns |
| mutable cholmod_sparse* m_H = nullptr; // The householder vectors |
| mutable StorageIndex* m_HPinv = nullptr; // The row permutation of H |
| mutable cholmod_dense* m_HTau = nullptr; // The Householder coefficients |
| mutable Index m_rank; // The rank of the matrix |
| mutable cholmod_common m_cc; // Workspace and parameters |
| bool m_useDefaultThreshold; // Use default threshold |
| Index m_rows; |
| template <typename, typename> |
| friend struct SPQR_QProduct; |
| }; |
| |
| template <typename SPQRType, typename Derived> |
| struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType, Derived> > { |
| typedef typename SPQRType::Scalar Scalar; |
| typedef typename SPQRType::StorageIndex StorageIndex; |
| // Define the constructor to get reference to argument types |
| SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) |
| : m_spqr(spqr), m_other(other), m_transpose(transpose) {} |
| |
| inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); } |
| inline Index cols() const { return m_other.cols(); } |
| // Assign to a vector |
| template <typename ResType> |
| void evalTo(ResType& res) const { |
| cholmod_dense y_cd; |
| cholmod_dense* x_cd; |
| int method = m_transpose ? SPQR_QTX : SPQR_QX; |
| cholmod_common* cc = m_spqr.cholmodCommon(); |
| y_cd = viewAsCholmod(m_other.const_cast_derived()); |
| x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc); |
| res = Matrix<Scalar, ResType::RowsAtCompileTime, ResType::ColsAtCompileTime>::Map( |
| reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol); |
| cholmod_l_free_dense(&x_cd, cc); |
| } |
| const SPQRType& m_spqr; |
| const Derived& m_other; |
| bool m_transpose; |
| }; |
| template <typename SPQRType> |
| struct SPQRMatrixQReturnType { |
| SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {} |
| template <typename Derived> |
| SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other) { |
| return SPQR_QProduct<SPQRType, Derived>(m_spqr, other.derived(), false); |
| } |
| SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const { return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); } |
| // To use for operations with the transpose of Q |
| SPQRMatrixQTransposeReturnType<SPQRType> transpose() const { |
| return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); |
| } |
| const SPQRType& m_spqr; |
| }; |
| |
| template <typename SPQRType> |
| struct SPQRMatrixQTransposeReturnType { |
| SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {} |
| template <typename Derived> |
| SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other) { |
| return SPQR_QProduct<SPQRType, Derived>(m_spqr, other.derived(), true); |
| } |
| const SPQRType& m_spqr; |
| }; |
| |
| } // End namespace Eigen |
| #endif |