| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| /* |
| |
| * NOTE: This file is the modified version of xpivotL.c file in SuperLU |
| |
| * -- SuperLU routine (version 3.0) -- |
| * Univ. of California Berkeley, Xerox Palo Alto Research Center, |
| * and Lawrence Berkeley National Lab. |
| * October 15, 2003 |
| * |
| * Copyright (c) 1994 by Xerox Corporation. All rights reserved. |
| * |
| * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY |
| * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. |
| * |
| * Permission is hereby granted to use or copy this program for any |
| * purpose, provided the above notices are retained on all copies. |
| * Permission to modify the code and to distribute modified code is |
| * granted, provided the above notices are retained, and a notice that |
| * the code was modified is included with the above copyright notice. |
| */ |
| #ifndef SPARSELU_PIVOTL_H |
| #define SPARSELU_PIVOTL_H |
| |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| namespace internal { |
| |
| /** |
| * \brief Performs the numerical pivoting on the current column of L, and the CDIV operation. |
| * |
| * Pivot policy : |
| * (1) Compute thresh = u * max_(i>=j) abs(A_ij); |
| * (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN |
| * pivot row = k; |
| * ELSE IF abs(A_jj) >= thresh THEN |
| * pivot row = j; |
| * ELSE |
| * pivot row = m; |
| * |
| * Note: If you absolutely want to use a given pivot order, then set u=0.0. |
| * |
| * \param jcol The current column of L |
| * \param diagpivotthresh diagonal pivoting threshold |
| * \param[in,out] perm_r Row permutation (threshold pivoting) |
| * \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc' |
| * \param[out] pivrow The pivot row |
| * \param glu Global LU data |
| * \return 0 if success, i > 0 if U(i,i) is exactly zero |
| * |
| */ |
| template <typename Scalar, typename StorageIndex> |
| Index SparseLUImpl<Scalar, StorageIndex>::pivotL(const Index jcol, const RealScalar& diagpivotthresh, |
| IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, |
| GlobalLU_t& glu) { |
| Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol |
| Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0 |
| Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion |
| Index nsupr = glu.xlsub(fsupc + 1) - lptr; // Number of rows in the supernode |
| Index lda = glu.xlusup(fsupc + 1) - glu.xlusup(fsupc); // leading dimension |
| Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode |
| Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode |
| StorageIndex* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode |
| |
| // Determine the largest abs numerical value for partial pivoting |
| Index diagind = iperm_c(jcol); // diagonal index |
| RealScalar pivmax(-1.0); |
| Index pivptr = nsupc; |
| Index diag = emptyIdxLU; |
| RealScalar rtemp; |
| Index isub, icol, itemp, k; |
| for (isub = nsupc; isub < nsupr; ++isub) { |
| using std::abs; |
| rtemp = abs(lu_col_ptr[isub]); |
| if (rtemp > pivmax) { |
| pivmax = rtemp; |
| pivptr = isub; |
| } |
| if (lsub_ptr[isub] == diagind) diag = isub; |
| } |
| |
| // Test for singularity |
| if (pivmax <= RealScalar(0.0)) { |
| // if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero |
| pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr]; |
| perm_r(pivrow) = StorageIndex(jcol); |
| return (jcol + 1); |
| } |
| |
| RealScalar thresh = diagpivotthresh * pivmax; |
| |
| // Choose appropriate pivotal element |
| |
| { |
| // Test if the diagonal element can be used as a pivot (given the threshold value) |
| if (diag >= 0) { |
| // Diagonal element exists |
| using std::abs; |
| rtemp = abs(lu_col_ptr[diag]); |
| if (rtemp != RealScalar(0.0) && rtemp >= thresh) pivptr = diag; |
| } |
| pivrow = lsub_ptr[pivptr]; |
| } |
| |
| // Record pivot row |
| perm_r(pivrow) = StorageIndex(jcol); |
| // Interchange row subscripts |
| if (pivptr != nsupc) { |
| std::swap(lsub_ptr[pivptr], lsub_ptr[nsupc]); |
| // Interchange numerical values as well, for the two rows in the whole snode |
| // such that L is indexed the same way as A |
| for (icol = 0; icol <= nsupc; icol++) { |
| itemp = pivptr + icol * lda; |
| std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * lda]); |
| } |
| } |
| // cdiv operations |
| Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc]; |
| for (k = nsupc + 1; k < nsupr; k++) lu_col_ptr[k] *= temp; |
| return 0; |
| } |
| |
| } // end namespace internal |
| } // end namespace Eigen |
| |
| #endif // SPARSELU_PIVOTL_H |