| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010-2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_GLOBAL_FUNCTIONS_H |
| #define EIGEN_GLOBAL_FUNCTIONS_H |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| |
| #define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \ |
| /** \returns an expression of the coefficient-wise DOC_OP of \a x |
| |
| DOC_DETAILS |
| |
| \sa <a href="group__CoeffwiseMathFunctions.html#cwisetable_##NAME">Math functions</a>, class CwiseUnaryOp |
| */ \ |
| template<typename Derived> \ |
| inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \ |
| NAME(const Eigen::ArrayBase<Derived>& x); |
| |
| #else |
| |
| #define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \ |
| template<typename Derived> \ |
| inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \ |
| (NAME)(const Eigen::ArrayBase<Derived>& x) { \ |
| return Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived>(x.derived()); \ |
| } |
| |
| #endif // EIGEN_PARSED_BY_DOXYGEN |
| |
| #define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \ |
| \ |
| template<typename Derived> \ |
| struct NAME##_retval<ArrayBase<Derived> > \ |
| { \ |
| typedef const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> type; \ |
| }; \ |
| template<typename Derived> \ |
| struct NAME##_impl<ArrayBase<Derived> > \ |
| { \ |
| static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \ |
| { \ |
| return typename NAME##_retval<ArrayBase<Derived> >::type(x.derived()); \ |
| } \ |
| }; |
| |
| namespace Eigen |
| { |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op,real part,\sa ArrayBase::real) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op,imaginary part,\sa ArrayBase::imag) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op,complex conjugate,\sa ArrayBase::conjugate) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(inverse,scalar_inverse_op,inverse,\sa ArrayBase::inverse) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sin,scalar_sin_op,sine,\sa ArrayBase::sin) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cos,scalar_cos_op,cosine,\sa ArrayBase::cos) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op,tangent,\sa ArrayBase::tan) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atan,scalar_atan_op,arc-tangent,\sa ArrayBase::atan) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op,arc-sine,\sa ArrayBase::asin) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op,arc-consine,\sa ArrayBase::acos) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sinh,scalar_sinh_op,hyperbolic sine,\sa ArrayBase::sinh) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cosh,scalar_cosh_op,hyperbolic cosine,\sa ArrayBase::cosh) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op,hyperbolic tangent,\sa ArrayBase::tanh) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op,natural logarithm of the gamma function,\sa ArrayBase::lgamma) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(digamma,scalar_digamma_op,derivative of lgamma,\sa ArrayBase::digamma) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erf,scalar_erf_op,error function,\sa ArrayBase::erf) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erfc,scalar_erfc_op,complement error function,\sa ArrayBase::erfc) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op,exponential,\sa ArrayBase::exp) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op,natural logarithm,\sa Eigen::log10 DOXCOMMA ArrayBase::log) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log1p,scalar_log1p_op,natural logarithm of 1 plus the value,\sa ArrayBase::log1p) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log10,scalar_log10_op,base 10 logarithm,\sa Eigen::log DOXCOMMA ArrayBase::log) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op,absolute value,\sa ArrayBase::abs DOXCOMMA MatrixBase::cwiseAbs) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs2,scalar_abs2_op,squared absolute value,\sa ArrayBase::abs2 DOXCOMMA MatrixBase::cwiseAbs2) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(arg,scalar_arg_op,complex argument,\sa ArrayBase::arg) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sqrt,scalar_sqrt_op,square root,\sa ArrayBase::sqrt DOXCOMMA MatrixBase::cwiseSqrt) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(square,scalar_square_op,square (power 2),\sa Eigen::abs2 DOXCOMMA Eigen::pow DOXCOMMA ArrayBase::square) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cube,scalar_cube_op,cube (power 3),\sa Eigen::pow DOXCOMMA ArrayBase::cube) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(round,scalar_round_op,nearest integer,\sa Eigen::floor DOXCOMMA Eigen::ceil DOXCOMMA ArrayBase::round) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(floor,scalar_floor_op,nearest integer not greater than the giben value,\sa Eigen::ceil DOXCOMMA ArrayBase::floor) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(ceil,scalar_ceil_op,nearest integer not less than the giben value,\sa Eigen::floor DOXCOMMA ArrayBase::ceil) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isnan,scalar_isnan_op,not-a-number test,\sa Eigen::isinf DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isnan) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isinf,scalar_isinf_op,infinite value test,\sa Eigen::isnan DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isinf) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isfinite,scalar_isfinite_op,finite value test,\sa Eigen::isinf DOXCOMMA Eigen::isnan DOXCOMMA ArrayBase::isfinite) |
| EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sign,scalar_sign_op,sign (or 0),\sa ArrayBase::sign) |
| |
| /** \returns an expression of the coefficient-wise power of \a x to the given constant \a exponent. |
| * |
| * \sa ArrayBase::pow() |
| */ |
| template<typename Derived> |
| inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar>, const Derived> |
| pow(const Eigen::ArrayBase<Derived>& x, const typename Derived::Scalar& exponent) { |
| return x.derived().pow(exponent); |
| } |
| |
| /** \returns an expression of the coefficient-wise power of \a x to the given array of \a exponents. |
| * |
| * This function computes the coefficient-wise power. |
| * |
| * Example: \include Cwise_array_power_array.cpp |
| * Output: \verbinclude Cwise_array_power_array.out |
| * |
| * \sa ArrayBase::pow() |
| */ |
| template<typename Derived,typename ExponentDerived> |
| inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived> |
| pow(const Eigen::ArrayBase<Derived>& x, const Eigen::ArrayBase<ExponentDerived>& exponents) |
| { |
| return Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived>( |
| x.derived(), |
| exponents.derived() |
| ); |
| } |
| |
| /** \returns an expression of the coefficient-wise power of the scalar \a x to the given array of \a exponents. |
| * |
| * This function computes the coefficient-wise power between a scalar and an array of exponents. |
| * Beaware that the scalar type of the input scalar \a x and the exponents \a exponents must be the same. |
| * |
| * Example: \include Cwise_scalar_power_array.cpp |
| * Output: \verbinclude Cwise_scalar_power_array.out |
| * |
| * \sa ArrayBase::pow() |
| */ |
| template<typename Derived> |
| inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const typename Derived::ConstantReturnType, const Derived> |
| pow(const typename Derived::Scalar& x, const Eigen::ArrayBase<Derived>& exponents) |
| { |
| typename Derived::ConstantReturnType constant_x(exponents.rows(), exponents.cols(), x); |
| return Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const typename Derived::ConstantReturnType, const Derived>( |
| constant_x, |
| exponents.derived() |
| ); |
| } |
| |
| /** |
| * \brief Component-wise division of a scalar by array elements. |
| **/ |
| template <typename Derived> |
| inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived> |
| operator/(const typename Derived::Scalar& s, const Eigen::ArrayBase<Derived>& a) |
| { |
| return Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>( |
| a.derived(), |
| Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>(s) |
| ); |
| } |
| |
| /** \cpp11 \returns an expression of the coefficient-wise igamma(\a a, \a x) to the given arrays. |
| * |
| * This function computes the coefficient-wise incomplete gamma function. |
| * |
| * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, |
| * or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar |
| * type T to be supported. |
| * |
| * \sa Eigen::igammac(), Eigen::lgamma() |
| */ |
| template<typename Derived,typename ExponentDerived> |
| inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived> |
| igamma(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x) |
| { |
| return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>( |
| a.derived(), |
| x.derived() |
| ); |
| } |
| |
| /** \cpp11 \returns an expression of the coefficient-wise igammac(\a a, \a x) to the given arrays. |
| * |
| * This function computes the coefficient-wise complementary incomplete gamma function. |
| * |
| * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, |
| * or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar |
| * type T to be supported. |
| * |
| * \sa Eigen::igamma(), Eigen::lgamma() |
| */ |
| template<typename Derived,typename ExponentDerived> |
| inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived> |
| igammac(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x) |
| { |
| return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>( |
| a.derived(), |
| x.derived() |
| ); |
| } |
| |
| /** \cpp11 \returns an expression of the coefficient-wise polygamma(\a n, \a x) to the given arrays. |
| * |
| * It returns the \a n -th derivative of the digamma(psi) evaluated at \c x. |
| * |
| * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, |
| * or float/double in non c++11 mode, the user has to provide implementations of polygamma(T,T) for any scalar |
| * type T to be supported. |
| * |
| * \sa Eigen::digamma() |
| */ |
| // * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x) |
| // * \sa ArrayBase::polygamma() |
| template<typename DerivedN,typename DerivedX> |
| inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX> |
| polygamma(const Eigen::ArrayBase<DerivedN>& n, const Eigen::ArrayBase<DerivedX>& x) |
| { |
| return Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX>( |
| n.derived(), |
| x.derived() |
| ); |
| } |
| |
| /** \cpp11 \returns an expression of the coefficient-wise betainc(\a x, \a a, \a b) to the given arrays. |
| * |
| * This function computes the regularized incomplete beta function (integral). |
| * |
| * \note This function supports only float and double scalar types in c++11 mode. To support other scalar types, |
| * or float/double in non c++11 mode, the user has to provide implementations of betainc(T,T,T) for any scalar |
| * type T to be supported. |
| * |
| * \sa Eigen::betainc(), Eigen::lgamma() |
| */ |
| template<typename ArgADerived, typename ArgBDerived, typename ArgXDerived> |
| inline const Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived> |
| betainc(const Eigen::ArrayBase<ArgADerived>& a, const Eigen::ArrayBase<ArgBDerived>& b, const Eigen::ArrayBase<ArgXDerived>& x) |
| { |
| return Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>( |
| a.derived(), |
| b.derived(), |
| x.derived() |
| ); |
| } |
| |
| |
| /** \returns an expression of the coefficient-wise zeta(\a x, \a q) to the given arrays. |
| * |
| * It returns the Riemann zeta function of two arguments \a x and \a q: |
| * |
| * \param x is the exposent, it must be > 1 |
| * \param q is the shift, it must be > 0 |
| * |
| * \note This function supports only float and double scalar types. To support other scalar types, the user has |
| * to provide implementations of zeta(T,T) for any scalar type T to be supported. |
| * |
| * \sa ArrayBase::zeta() |
| */ |
| template<typename DerivedX,typename DerivedQ> |
| inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ> |
| zeta(const Eigen::ArrayBase<DerivedX>& x, const Eigen::ArrayBase<DerivedQ>& q) |
| { |
| return Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ>( |
| x.derived(), |
| q.derived() |
| ); |
| } |
| |
| namespace internal |
| { |
| EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op) |
| EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(imag,scalar_imag_op) |
| EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op) |
| } |
| } |
| |
| // TODO: cleanly disable those functions that are not supported on Array (numext::real_ref, internal::random, internal::isApprox...) |
| |
| #endif // EIGEN_GLOBAL_FUNCTIONS_H |