| // Standard 16-bit float type, mostly useful for GPUs. Defines a new |
| // class Eigen::half (inheriting from CUDA's __half struct) with |
| // operator overloads such that it behaves basically as an arithmetic |
| // type. It will be quite slow on CPUs (so it is recommended to stay |
| // in fp32 for CPUs, except for simple parameter conversions, I/O |
| // to disk and the likes), but fast on GPUs. |
| // |
| // |
| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| // |
| // The conversion routines are Copyright (c) Fabian Giesen, 2016. |
| // The original license follows: |
| // |
| // Copyright (c) Fabian Giesen, 2016 |
| // All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted. |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef EIGEN_HALF_CUDA_H |
| #define EIGEN_HALF_CUDA_H |
| |
| #if __cplusplus > 199711L |
| #define EIGEN_EXPLICIT_CAST(tgt_type) explicit operator tgt_type() |
| #else |
| #define EIGEN_EXPLICIT_CAST(tgt_type) operator tgt_type() |
| #endif |
| |
| |
| #if !defined(EIGEN_HAS_CUDA_FP16) |
| |
| // Make our own __half definition that is similar to CUDA's. |
| struct __half { |
| EIGEN_DEVICE_FUNC __half() {} |
| explicit EIGEN_DEVICE_FUNC __half(unsigned short raw) : x(raw) {} |
| unsigned short x; |
| }; |
| |
| #endif |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x); |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff); |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half h); |
| |
| } // end namespace internal |
| |
| // Class definition. |
| struct half : public __half { |
| EIGEN_DEVICE_FUNC half() {} |
| |
| EIGEN_DEVICE_FUNC half(const __half& h) : __half(h) {} |
| EIGEN_DEVICE_FUNC half(const half& h) : __half(h) {} |
| |
| explicit EIGEN_DEVICE_FUNC half(bool b) |
| : __half(internal::raw_uint16_to_half(b ? 0x3c00 : 0)) {} |
| template<class T> |
| explicit EIGEN_DEVICE_FUNC half(const T& val) |
| : __half(internal::float_to_half_rtne(static_cast<float>(val))) {} |
| explicit EIGEN_DEVICE_FUNC half(float f) |
| : __half(internal::float_to_half_rtne(f)) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(bool) const { |
| // +0.0 and -0.0 become false, everything else becomes true. |
| return (x & 0x7fff) != 0; |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(signed char) const { |
| return static_cast<signed char>(internal::half_to_float(*this)); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned char) const { |
| return static_cast<unsigned char>(internal::half_to_float(*this)); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(short) const { |
| return static_cast<short>(internal::half_to_float(*this)); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned short) const { |
| return static_cast<unsigned short>(internal::half_to_float(*this)); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(int) const { |
| return static_cast<int>(internal::half_to_float(*this)); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned int) const { |
| return static_cast<unsigned int>(internal::half_to_float(*this)); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long) const { |
| return static_cast<long>(internal::half_to_float(*this)); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long) const { |
| return static_cast<unsigned long>(internal::half_to_float(*this)); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long long) const { |
| return static_cast<long long>(internal::half_to_float(*this)); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long long) const { |
| return static_cast<unsigned long long>(internal::half_to_float(*this)); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(float) const { |
| return internal::half_to_float(*this); |
| } |
| EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(double) const { |
| return static_cast<double>(internal::half_to_float(*this)); |
| } |
| |
| EIGEN_DEVICE_FUNC half& operator=(const half& other) { |
| x = other.x; |
| return *this; |
| } |
| }; |
| |
| #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 |
| |
| // Intrinsics for native fp16 support. Note that on current hardware, |
| // these are no faster than fp32 arithmetic (you need to use the half2 |
| // versions to get the ALU speed increased), but you do save the |
| // conversion steps back and forth. |
| |
| __device__ half operator + (const half& a, const half& b) { |
| return __hadd(a, b); |
| } |
| __device__ half operator * (const half& a, const half& b) { |
| return __hmul(a, b); |
| } |
| __device__ half operator - (const half& a, const half& b) { |
| return __hsub(a, b); |
| } |
| __device__ half operator / (const half& a, const half& b) { |
| float num = __half2float(a); |
| float denom = __half2float(b); |
| return __float2half(num / denom); |
| } |
| __device__ half operator - (const half& a) { |
| return __hneg(a); |
| } |
| __device__ half& operator += (half& a, const half& b) { |
| a = a + b; |
| return a; |
| } |
| __device__ half& operator *= (half& a, const half& b) { |
| a = a * b; |
| return a; |
| } |
| __device__ half& operator -= (half& a, const half& b) { |
| a = a - b; |
| return a; |
| } |
| __device__ half& operator /= (half& a, const half& b) { |
| a = a / b; |
| return a; |
| } |
| __device__ bool operator == (const half& a, const half& b) { |
| return __heq(a, b); |
| } |
| __device__ bool operator != (const half& a, const half& b) { |
| return __hne(a, b); |
| } |
| __device__ bool operator < (const half& a, const half& b) { |
| return __hlt(a, b); |
| } |
| __device__ bool operator <= (const half& a, const half& b) { |
| return __hle(a, b); |
| } |
| __device__ bool operator > (const half& a, const half& b) { |
| return __hgt(a, b); |
| } |
| __device__ bool operator >= (const half& a, const half& b) { |
| return __hge(a, b); |
| } |
| |
| #else // Emulate support for half floats |
| |
| // Definitions for CPUs and older CUDA, mostly working through conversion |
| // to/from fp32. |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) { |
| return half(float(a) + float(b)); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) { |
| return half(float(a) * float(b)); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) { |
| return half(float(a) - float(b)); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) { |
| return half(float(a) / float(b)); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) { |
| half result; |
| result.x = a.x ^ 0x8000; |
| return result; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) { |
| a = half(float(a) + float(b)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) { |
| a = half(float(a) * float(b)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) { |
| a = half(float(a) - float(b)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) { |
| a = half(float(a) / float(b)); |
| return a; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) { |
| return float(a) == float(b); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) { |
| return float(a) != float(b); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) { |
| return float(a) < float(b); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) { |
| return float(a) <= float(b); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) { |
| return float(a) > float(b); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) { |
| return float(a) >= float(b); |
| } |
| |
| #endif // Emulate support for half floats |
| |
| // Division by an index. Do it in full float precision to avoid accuracy |
| // issues in converting the denominator to half. |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) { |
| return Eigen::half(static_cast<float>(a) / static_cast<float>(b)); |
| } |
| |
| // Conversion routines, including fallbacks for the host or older CUDA. |
| // Note that newer Intel CPUs (Haswell or newer) have vectorized versions of |
| // these in hardware. If we need more performance on older/other CPUs, they are |
| // also possible to vectorize directly. |
| |
| namespace internal { |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x) { |
| __half h; |
| h.x = x; |
| return h; |
| } |
| |
| union FP32 { |
| unsigned int u; |
| float f; |
| }; |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff) { |
| #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 |
| return __float2half(ff); |
| |
| #elif defined(EIGEN_HAS_FP16_C) |
| __half h; |
| h.x = _cvtss_sh(ff, 0); |
| return h; |
| |
| #else |
| FP32 f; f.f = ff; |
| |
| const FP32 f32infty = { 255 << 23 }; |
| const FP32 f16max = { (127 + 16) << 23 }; |
| const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 }; |
| unsigned int sign_mask = 0x80000000u; |
| __half o; |
| o.x = static_cast<unsigned short>(0x0u); |
| |
| unsigned int sign = f.u & sign_mask; |
| f.u ^= sign; |
| |
| // NOTE all the integer compares in this function can be safely |
| // compiled into signed compares since all operands are below |
| // 0x80000000. Important if you want fast straight SSE2 code |
| // (since there's no unsigned PCMPGTD). |
| |
| if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set) |
| o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf |
| } else { // (De)normalized number or zero |
| if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero |
| // use a magic value to align our 10 mantissa bits at the bottom of |
| // the float. as long as FP addition is round-to-nearest-even this |
| // just works. |
| f.f += denorm_magic.f; |
| |
| // and one integer subtract of the bias later, we have our final float! |
| o.x = static_cast<unsigned short>(f.u - denorm_magic.u); |
| } else { |
| unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd |
| |
| // update exponent, rounding bias part 1 |
| f.u += ((unsigned int)(15 - 127) << 23) + 0xfff; |
| // rounding bias part 2 |
| f.u += mant_odd; |
| // take the bits! |
| o.x = static_cast<unsigned short>(f.u >> 13); |
| } |
| } |
| |
| o.x |= static_cast<unsigned short>(sign >> 16); |
| return o; |
| #endif |
| } |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half h) { |
| #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 |
| return __half2float(h); |
| |
| #elif defined(EIGEN_HAS_FP16_C) |
| return _cvtsh_ss(h.x); |
| |
| #else |
| const FP32 magic = { 113 << 23 }; |
| const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift |
| FP32 o; |
| |
| o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits |
| unsigned int exp = shifted_exp & o.u; // just the exponent |
| o.u += (127 - 15) << 23; // exponent adjust |
| |
| // handle exponent special cases |
| if (exp == shifted_exp) { // Inf/NaN? |
| o.u += (128 - 16) << 23; // extra exp adjust |
| } else if (exp == 0) { // Zero/Denormal? |
| o.u += 1 << 23; // extra exp adjust |
| o.f -= magic.f; // renormalize |
| } |
| |
| o.u |= (h.x & 0x8000) << 16; // sign bit |
| return o.f; |
| #endif |
| } |
| |
| } // end namespace internal |
| |
| // Traits. |
| |
| namespace internal { |
| |
| template<> struct is_arithmetic<half> { enum { value = true }; }; |
| |
| } // end namespace internal |
| |
| template<> struct NumTraits<Eigen::half> |
| : GenericNumTraits<Eigen::half> |
| { |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half epsilon() { |
| return internal::raw_uint16_to_half(0x0800); |
| } |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half dummy_precision() { return half(1e-2f); } |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half highest() { |
| return internal::raw_uint16_to_half(0x7bff); |
| } |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half lowest() { |
| return internal::raw_uint16_to_half(0xfbff); |
| } |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half infinity() { |
| return internal::raw_uint16_to_half(0x7c00); |
| } |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() { |
| return internal::raw_uint16_to_half(0x7c01); |
| } |
| }; |
| |
| // Infinity/NaN checks. |
| |
| namespace numext { |
| |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const Eigen::half& a) { |
| return (a.x & 0x7fff) == 0x7c00; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const Eigen::half& a) { |
| #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 |
| return __hisnan(a); |
| #else |
| return (a.x & 0x7fff) > 0x7c00; |
| #endif |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const Eigen::half& a) { |
| return !(Eigen::numext::isinf)(a) && !(Eigen::numext::isnan)(a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half abs(const Eigen::half& a) { |
| Eigen::half result; |
| result.x = a.x & 0x7FFF; |
| return result; |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exp(const Eigen::half& a) { |
| return Eigen::half(::expf(float(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half log(const Eigen::half& a) { |
| return Eigen::half(::logf(float(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrt(const Eigen::half& a) { |
| return Eigen::half(::sqrtf(float(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half pow(const Eigen::half& a, const Eigen::half& b) { |
| return Eigen::half(::powf(float(a), float(b))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sin(const Eigen::half& a) { |
| return Eigen::half(::sinf(float(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half cos(const Eigen::half& a) { |
| return Eigen::half(::cosf(float(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half tan(const Eigen::half& a) { |
| return Eigen::half(::tanf(float(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half tanh(const Eigen::half& a) { |
| return Eigen::half(::tanhf(float(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floor(const Eigen::half& a) { |
| return Eigen::half(::floorf(float(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceil(const Eigen::half& a) { |
| return Eigen::half(::ceilf(float(a))); |
| } |
| |
| template <> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half mini(const Eigen::half& a, const Eigen::half& b) { |
| #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 |
| return __hlt(b, a) ? b : a; |
| #else |
| const float f1 = static_cast<float>(a); |
| const float f2 = static_cast<float>(b); |
| return f2 < f1 ? b : a; |
| #endif |
| } |
| template <> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half maxi(const Eigen::half& a, const Eigen::half& b) { |
| #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 |
| return __hlt(a, b) ? b : a; |
| #else |
| const float f1 = static_cast<float>(a); |
| const float f2 = static_cast<float>(b); |
| return f1 < f2 ? b : a; |
| #endif |
| } |
| |
| #if EIGEN_HAS_C99_MATH |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half lgamma(const Eigen::half& a) { |
| return Eigen::half(Eigen::numext::lgamma(static_cast<float>(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half digamma(const Eigen::half& a) { |
| return Eigen::half(Eigen::numext::digamma(static_cast<float>(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half zeta(const Eigen::half& x, const Eigen::half& q) { |
| return Eigen::half(Eigen::numext::zeta(static_cast<float>(x), static_cast<float>(q))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half polygamma(const Eigen::half& n, const Eigen::half& x) { |
| return Eigen::half(Eigen::numext::polygamma(static_cast<float>(n), static_cast<float>(x))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erf(const Eigen::half& a) { |
| return Eigen::half(Eigen::numext::erf(static_cast<float>(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erfc(const Eigen::half& a) { |
| return Eigen::half(Eigen::numext::erfc(static_cast<float>(a))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igamma(const Eigen::half& a, const Eigen::half& x) { |
| return Eigen::half(Eigen::numext::igamma(static_cast<float>(a), static_cast<float>(x))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igammac(const Eigen::half& a, const Eigen::half& x) { |
| return Eigen::half(Eigen::numext::igammac(static_cast<float>(a), static_cast<float>(x))); |
| } |
| template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half betainc(const Eigen::half& a, const Eigen::half& b, const Eigen::half& x) { |
| return Eigen::half(Eigen::numext::betainc(static_cast<float>(a), static_cast<float>(b), static_cast<float>(x))); |
| } |
| #endif |
| } // end namespace numext |
| |
| } // end namespace Eigen |
| |
| // Standard mathematical functions and trancendentals. |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half fabsh(const Eigen::half& a) { |
| Eigen::half result; |
| result.x = a.x & 0x7FFF; |
| return result; |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exph(const Eigen::half& a) { |
| return Eigen::half(::expf(float(a))); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half logh(const Eigen::half& a) { |
| return Eigen::half(::logf(float(a))); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrth(const Eigen::half& a) { |
| return Eigen::half(::sqrtf(float(a))); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half powh(const Eigen::half& a, const Eigen::half& b) { |
| return Eigen::half(::powf(float(a), float(b))); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floorh(const Eigen::half& a) { |
| return Eigen::half(::floorf(float(a))); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceilh(const Eigen::half& a) { |
| return Eigen::half(::ceilf(float(a))); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int (isnan)(const Eigen::half& a) { |
| return (Eigen::numext::isnan)(a); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int (isinf)(const Eigen::half& a) { |
| return (Eigen::numext::isinf)(a); |
| } |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int (isfinite)(const Eigen::half& a) { |
| return !(Eigen::numext::isinf)(a) && !(Eigen::numext::isnan)(a); |
| } |
| |
| |
| namespace std { |
| |
| EIGEN_ALWAYS_INLINE ostream& operator << (ostream& os, const Eigen::half& v) { |
| os << static_cast<float>(v); |
| return os; |
| } |
| |
| #if __cplusplus > 199711L |
| template <> |
| struct hash<Eigen::half> { |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const { |
| return static_cast<std::size_t>(a.x); |
| } |
| }; |
| #endif |
| |
| } // end namespace std |
| |
| |
| // Add the missing shfl_xor intrinsic |
| #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 |
| __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) { |
| return static_cast<Eigen::half>(__shfl_xor(static_cast<float>(var), laneMask, width)); |
| } |
| #endif |
| |
| // ldg() has an overload for __half, but we also need one for Eigen::half. |
| #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 350 |
| EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half __ldg(const Eigen::half* ptr) { |
| return Eigen::internal::raw_uint16_to_half( |
| __ldg(reinterpret_cast<const unsigned short*>(ptr))); |
| } |
| #endif |
| |
| |
| #endif // EIGEN_HALF_CUDA_H |