| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_CXX11_TENSOR_TENSOR_SCAN_H |
| #define EIGEN_CXX11_TENSOR_TENSOR_SCAN_H |
| namespace Eigen { |
| |
| namespace internal { |
| template <typename Op, typename XprType> |
| struct traits<TensorScanOp<Op, XprType> > |
| : public traits<XprType> { |
| typedef typename XprType::Scalar Scalar; |
| typedef traits<XprType> XprTraits; |
| typedef typename XprTraits::StorageKind StorageKind; |
| typedef typename XprType::Nested Nested; |
| typedef typename remove_reference<Nested>::type _Nested; |
| static const int NumDimensions = XprTraits::NumDimensions; |
| static const int Layout = XprTraits::Layout; |
| }; |
| |
| template<typename Op, typename XprType> |
| struct eval<TensorScanOp<Op, XprType>, Eigen::Dense> |
| { |
| typedef const TensorScanOp<Op, XprType>& type; |
| }; |
| |
| template<typename Op, typename XprType> |
| struct nested<TensorScanOp<Op, XprType>, 1, |
| typename eval<TensorScanOp<Op, XprType> >::type> |
| { |
| typedef TensorScanOp<Op, XprType> type; |
| }; |
| } // end namespace internal |
| |
| /** \class TensorScan |
| * \ingroup CXX11_Tensor_Module |
| * |
| * \brief Tensor scan class. |
| * |
| */ |
| |
| template <typename Op, typename XprType> |
| class TensorScanOp |
| : public TensorBase<TensorScanOp<Op, XprType>, ReadOnlyAccessors> { |
| public: |
| typedef typename Eigen::internal::traits<TensorScanOp>::Scalar Scalar; |
| typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename Eigen::internal::nested<TensorScanOp>::type Nested; |
| typedef typename Eigen::internal::traits<TensorScanOp>::StorageKind StorageKind; |
| typedef typename Eigen::internal::traits<TensorScanOp>::Index Index; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorScanOp( |
| const XprType& expr, const Index& axis, const Op& op = Op()) |
| : m_expr(expr), m_axis(axis), m_accumulator(op) {} |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| const Index axis() const { return m_axis; } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| const XprType& expression() const { return m_expr; } |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
| const Op accumulator() const { return m_accumulator; } |
| |
| protected: |
| typename XprType::Nested m_expr; |
| const Index m_axis; |
| const Op m_accumulator; |
| }; |
| |
| // Eval as rvalue |
| template <typename Op, typename ArgType, typename Device> |
| struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> { |
| |
| typedef TensorScanOp<Op, ArgType> XprType; |
| typedef typename XprType::Index Index; |
| static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; |
| typedef DSizes<Index, NumDims> Dimensions; |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; |
| |
| enum { |
| IsAligned = false, |
| PacketAccess = (internal::packet_traits<Scalar>::size > 1), |
| BlockAccess = false, |
| Layout = TensorEvaluator<ArgType, Device>::Layout, |
| CoordAccess = false, |
| RawAccess = true |
| }; |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, |
| const Device& device) |
| : m_impl(op.expression(), device), |
| m_device(device), |
| m_axis(op.axis()), |
| m_accumulator(op.accumulator()), |
| m_dimensions(m_impl.dimensions()), |
| m_size(m_dimensions[m_axis]), |
| m_stride(1), |
| m_output(NULL) { |
| |
| // Accumulating a scalar isn't supported. |
| EIGEN_STATIC_ASSERT(NumDims > 0, YOU_MADE_A_PROGRAMMING_MISTAKE); |
| eigen_assert(m_axis >= 0 && m_axis < NumDims); |
| |
| // Compute stride of scan axis |
| if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { |
| for (int i = 0; i < m_axis; ++i) { |
| m_stride = m_stride * m_dimensions[i]; |
| } |
| } else { |
| for (int i = NumDims - 1; i > m_axis; --i) { |
| m_stride = m_stride * m_dimensions[i]; |
| } |
| } |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { |
| return m_dimensions; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) { |
| m_impl.evalSubExprsIfNeeded(NULL); |
| if (data) { |
| accumulateTo(data); |
| return false; |
| } else { |
| m_output = static_cast<CoeffReturnType*>(m_device.allocate(dimensions().TotalSize() * sizeof(Scalar))); |
| accumulateTo(m_output); |
| return true; |
| } |
| } |
| |
| template<int LoadMode> |
| EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { |
| return internal::ploadt<PacketReturnType, LoadMode>(m_output + index); |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const |
| { |
| return m_output; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const |
| { |
| return m_output[index]; |
| } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { |
| if (m_output != NULL) { |
| m_device.deallocate(m_output); |
| m_output = NULL; |
| } |
| m_impl.cleanup(); |
| } |
| |
| protected: |
| TensorEvaluator<ArgType, Device> m_impl; |
| const Device& m_device; |
| const Index m_axis; |
| Op m_accumulator; |
| const Dimensions& m_dimensions; |
| const Index& m_size; |
| Index m_stride; |
| CoeffReturnType* m_output; |
| |
| // TODO(ibab) Parallelize this single-threaded implementation if desired |
| EIGEN_DEVICE_FUNC void accumulateTo(Scalar* data) { |
| // We fix the index along the scan axis to 0 and perform an |
| // scan per remaining entry. The iteration is split into two nested |
| // loops to avoid an integer division by keeping track of each idx1 and idx2. |
| for (Index idx1 = 0; idx1 < dimensions().TotalSize() / m_size; idx1 += m_stride) { |
| for (Index idx2 = 0; idx2 < m_stride; idx2++) { |
| // Calculate the starting offset for the scan |
| Index offset = idx1 * m_size + idx2; |
| |
| // Compute the prefix sum along the axis, starting at the calculated offset |
| CoeffReturnType accum = m_accumulator.initialize(); |
| for (Index idx3 = 0; idx3 < m_size; idx3++) { |
| Index curr = offset + idx3 * m_stride; |
| m_accumulator.reduce(m_impl.coeff(curr), &accum); |
| data[curr] = m_accumulator.finalize(accum); |
| } |
| } |
| } |
| } |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_CXX11_TENSOR_TENSOR_SCAN_H |